Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The IDEA Authors. All rights reserved. | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch RoFormer model. """ | |
| import math | |
| import os | |
| import warnings | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| from transformers.file_utils import ( | |
| ModelOutput, | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| BaseModelOutputWithPoolingAndCrossAttentions, | |
| CausalLMOutputWithCrossAttentions, | |
| MaskedLMOutput, | |
| MultipleChoiceModelOutput, | |
| NextSentencePredictorOutput, | |
| QuestionAnsweringModelOutput, | |
| SequenceClassifierOutput, | |
| TokenClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import ( | |
| PreTrainedModel, | |
| apply_chunking_to_forward, | |
| find_pruneable_heads_and_indices, | |
| prune_linear_layer, | |
| ) | |
| from transformers.utils import logging | |
| from .configuration_roformer import RoFormerConfig | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "RoFormerConfig" | |
| _TOKENIZER_FOR_DOC = "BertTokenizer" | |
| _CHECKPOINT_FOR_DOC = "nvidia/megatron-bert-cased-345m" | |
| RoFormer_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "nvidia/megatron-bert-cased-345m", | |
| # See all RoFormer models at https://huggingface.co/models?filter=RoFormer | |
| ] | |
| def load_tf_weights_in_RoFormer(model, config, tf_checkpoint_path): | |
| """Load tf checkpoints in a pytorch model.""" | |
| try: | |
| import re | |
| import numpy as np | |
| import tensorflow as tf | |
| except ImportError: | |
| logger.error( | |
| "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
| "https://www.tensorflow.org/install/ for installation instructions." | |
| ) | |
| raise | |
| tf_path = os.path.abspath(tf_checkpoint_path) | |
| logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
| # Load weights from TF model | |
| init_vars = tf.train.list_variables(tf_path) | |
| names = [] | |
| arrays = [] | |
| for name, shape in init_vars: | |
| logger.info(f"Loading TF weight {name} with shape {shape}") | |
| array = tf.train.load_variable(tf_path, name) | |
| names.append(name) | |
| arrays.append(array) | |
| for name, array in zip(names, arrays): | |
| name = name.split("/") | |
| # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
| # which are not required for using pretrained model | |
| if any( | |
| n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", | |
| "AdamWeightDecayOptimizer_1", "global_step"] | |
| for n in name | |
| ): | |
| logger.info(f"Skipping {'/'.join(name)}") | |
| continue | |
| pointer = model | |
| for m_name in name: | |
| if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
| scope_names = re.split(r"_(\d+)", m_name) | |
| else: | |
| scope_names = [m_name] | |
| if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
| pointer = getattr(pointer, "weight") | |
| elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
| pointer = getattr(pointer, "bias") | |
| elif scope_names[0] == "output_weights": | |
| pointer = getattr(pointer, "weight") | |
| elif scope_names[0] == "squad": | |
| pointer = getattr(pointer, "classifier") | |
| else: | |
| try: | |
| pointer = getattr(pointer, scope_names[0]) | |
| except AttributeError: | |
| logger.info(f"Skipping {'/'.join(name)}") | |
| continue | |
| if len(scope_names) >= 2: | |
| num = int(scope_names[1]) | |
| pointer = pointer[num] | |
| if m_name[-11:] == "_embeddings": | |
| pointer = getattr(pointer, "weight") | |
| elif m_name == "kernel": | |
| array = np.transpose(array) | |
| try: | |
| assert ( | |
| pointer.shape == array.shape | |
| ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | |
| except AssertionError as e: | |
| e.args += (pointer.shape, array.shape) | |
| raise | |
| logger.info("Initialize PyTorch weight {}".format(name)) | |
| pointer.data = torch.from_numpy(array) | |
| return model | |
| class RoFormerEmbeddings(nn.Module): | |
| """Construct the embeddings from word, position and token_type embeddings.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.word_embeddings = nn.Embedding( | |
| config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
| # @IDEA modified -> roformer removed the position_embedding, and add the totary position embedding in the self_attention_layer | |
| # self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
| self.token_type_embeddings = nn.Embedding( | |
| config.type_vocab_size, config.hidden_size) | |
| # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
| # any TensorFlow checkpoint file | |
| # In Megatron, layer-norm is applied after the 1st dropout. | |
| # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| # position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
| self.register_buffer("position_ids", torch.arange( | |
| config.max_position_embeddings).expand((1, -1))) | |
| self.position_embedding_type = getattr( | |
| config, "position_embedding_type", "absolute") | |
| def forward( | |
| self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 | |
| ): | |
| if input_ids is not None: | |
| input_shape = input_ids.size() | |
| else: | |
| input_shape = inputs_embeds.size()[:-1] | |
| seq_length = input_shape[1] | |
| if position_ids is None: | |
| position_ids = self.position_ids[:, | |
| past_key_values_length: seq_length + past_key_values_length] | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros( | |
| input_shape, dtype=torch.long, device=self.position_ids.device) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.word_embeddings(input_ids) | |
| token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
| embeddings = inputs_embeds + token_type_embeddings | |
| # @IDEA modified -> roformer removed the position_embedding | |
| # if self.position_embedding_type == "absolute": | |
| # position_embeddings = self.position_embeddings(position_ids) | |
| # embeddings += position_embeddings | |
| # Megatron BERT moves that layer norm after the drop-out (and to each layer). | |
| # embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class RoPEmbedding(nn.Module): | |
| def __init__(self, d_model): | |
| super(RoPEmbedding, self).__init__() | |
| self.d_model = d_model | |
| div_term = torch.exp(torch.arange( | |
| 0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
| self.register_buffer('div_term', div_term) | |
| def forward(self, x, seq_dim=0): | |
| # x 是 [s, b, np, hn],例如query和key | |
| x = x.permute(2, 1, 0, 3) | |
| t = torch.arange(x.size(seq_dim), device=x.device).type_as( | |
| self.div_term) | |
| sinusoid_inp = torch.outer(t, self.div_term) | |
| sin, cos = sinusoid_inp.sin(), sinusoid_inp.cos() # [s, hn] | |
| o_shape = (sin.size(0), 1, 1, sin.size(1)) | |
| sin, cos = sin.view(*o_shape), cos.view(*o_shape) # [s, 1, 1, hn] | |
| sin = torch.repeat_interleave(sin, 2, dim=-1) | |
| cos = torch.repeat_interleave(cos, 2, dim=-1) | |
| x2 = torch.stack([-x[..., 1::2], x[..., ::2]], dim=-1).reshape_as(x) | |
| x = cos * x + sin * x2 | |
| return x.permute(2, 1, 0, 3) | |
| # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->RoFormer | |
| class RoFormerSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
| raise ValueError( | |
| f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
| f"heads ({config.num_attention_heads})" | |
| ) | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int( | |
| config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| self.position_embedding_type = getattr( | |
| config, "position_embedding_type", "absolute") | |
| if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.distance_embedding = nn.Embedding( | |
| 2 * config.max_position_embeddings - 1, self.attention_head_size) | |
| # @IDEA modified -> add rope positional embedding | |
| self.rope_emb = RoPEmbedding(self.attention_head_size) | |
| self.is_decoder = config.is_decoder | |
| def transpose_for_scores(self, x): | |
| new_x_shape = x.size()[ | |
| :-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(*new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| past_key_value=None, | |
| output_attentions=False, | |
| ): | |
| mixed_query_layer = self.query(hidden_states) | |
| # If this is instantiated as a cross-attention module, the keys | |
| # and values come from an encoder; the attention mask needs to be | |
| # such that the encoder's padding tokens are not attended to. | |
| is_cross_attention = encoder_hidden_states is not None | |
| if is_cross_attention and past_key_value is not None: | |
| # reuse k,v, cross_attentions | |
| key_layer = past_key_value[0] | |
| value_layer = past_key_value[1] | |
| attention_mask = encoder_attention_mask | |
| elif is_cross_attention: | |
| key_layer = self.transpose_for_scores( | |
| self.key(encoder_hidden_states)) | |
| value_layer = self.transpose_for_scores( | |
| self.value(encoder_hidden_states)) | |
| attention_mask = encoder_attention_mask | |
| elif past_key_value is not None: | |
| key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
| key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | |
| value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | |
| else: | |
| key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| if self.is_decoder: | |
| # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
| # Further calls to cross_attention layer can then reuse all cross-attention | |
| # key/value_states (first "if" case) | |
| # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
| # all previous decoder key/value_states. Further calls to uni-directional self-attention | |
| # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
| # if encoder bi-directional self-attention `past_key_value` is always `None` | |
| past_key_value = (key_layer, value_layer) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| # @IDEA modified -> add rope positional embedding | |
| # print('query_layer.shape') | |
| # print(query_layer.shape) | |
| # query_layer.hsape -> [batch_size,num_head,seq_len,per_head_hidden_size] | |
| query_layer = self.rope_emb(query_layer) | |
| key_layer = self.rope_emb(key_layer) | |
| attention_scores = torch.matmul( | |
| query_layer, key_layer.transpose(-1, -2)) | |
| """ @IDEA modified -> removed the megatron positional | |
| if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
| seq_length = hidden_states.size()[1] | |
| position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
| position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
| distance = position_ids_l - position_ids_r | |
| positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
| positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
| if self.position_embedding_type == "relative_key": | |
| relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
| attention_scores = attention_scores + relative_position_scores | |
| elif self.position_embedding_type == "relative_key_query": | |
| relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
| relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
| attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
| """ | |
| attention_scores = attention_scores / \ | |
| math.sqrt(self.attention_head_size) | |
| if attention_mask is not None: | |
| # Apply the attention mask is (precomputed for all layers in RoFormerModel forward() function) | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[ | |
| :-2] + (self.all_head_size,) | |
| context_layer = context_layer.view(*new_context_layer_shape) | |
| outputs = (context_layer, attention_probs) if output_attentions else ( | |
| context_layer,) | |
| if self.is_decoder: | |
| outputs = outputs + (past_key_value,) | |
| return outputs | |
| # Based transformers.models.bert.modeling_bert.BertSelfOutput. Moved LayerNorm to RoFormerAttention below. | |
| class RoFormerSelfOutput(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states, residual): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| return residual + hidden_states | |
| # Based transformers.models.bert.modeling_bert.BertAttention. Added LayerNorm. | |
| class RoFormerAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.self = RoFormerSelfAttention(config) | |
| self.output = RoFormerSelfOutput(config) | |
| self.pruned_heads = set() | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
| ) | |
| # Prune linear layers | |
| self.self.query = prune_linear_layer(self.self.query, index) | |
| self.self.key = prune_linear_layer(self.self.key, index) | |
| self.self.value = prune_linear_layer(self.self.value, index) | |
| self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
| # Update hyper params and store pruned heads | |
| self.self.num_attention_heads = self.self.num_attention_heads - \ | |
| len(heads) | |
| self.self.all_head_size = self.self.attention_head_size * \ | |
| self.self.num_attention_heads | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| past_key_value=None, | |
| output_attentions=False, | |
| ): | |
| ln_outputs = self.ln(hidden_states) | |
| self_outputs = self.self( | |
| ln_outputs, | |
| attention_mask, | |
| head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| past_key_value, | |
| output_attentions, | |
| ) | |
| attention_output = self.output(self_outputs[0], hidden_states) | |
| # add attentions if we output them | |
| outputs = (attention_output,) + self_outputs[1:] | |
| return outputs | |
| # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->RoFormer | |
| class RoFormerIntermediate(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
| if isinstance(config.hidden_act, str): | |
| self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.intermediate_act_fn = config.hidden_act | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| return hidden_states | |
| # Based on transformers.models.bert.modeling_bert.BertOutput. Moved LayerNorm to RoFormerLayer below. | |
| class RoFormerOutput(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| return input_tensor + hidden_states | |
| # Based on transformers.models.bert.modeling_bert.BertLayer. Added LayerNorm. | |
| class RoFormerLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
| self.seq_len_dim = 1 | |
| self.attention = RoFormerAttention(config) | |
| self.is_decoder = config.is_decoder | |
| self.add_cross_attention = config.add_cross_attention | |
| if self.add_cross_attention: | |
| assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added" | |
| self.crossattention = RoFormerAttention(config) | |
| self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.intermediate = RoFormerIntermediate(config) | |
| self.output = RoFormerOutput(config) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| past_key_value=None, | |
| output_attentions=False, | |
| ): | |
| # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
| self_attn_past_key_value = past_key_value[: | |
| 2] if past_key_value is not None else None | |
| self_attention_outputs = self.attention( | |
| hidden_states, | |
| attention_mask, | |
| head_mask, | |
| output_attentions=output_attentions, | |
| past_key_value=self_attn_past_key_value, | |
| ) | |
| attention_output = self_attention_outputs[0] | |
| # if decoder, the last output is tuple of self-attn cache | |
| if self.is_decoder: | |
| outputs = self_attention_outputs[1:-1] | |
| present_key_value = self_attention_outputs[-1] | |
| else: | |
| # add self attentions if we output attention weights | |
| outputs = self_attention_outputs[1:] | |
| cross_attn_present_key_value = None | |
| if self.is_decoder and encoder_hidden_states is not None: | |
| assert hasattr( | |
| self, "crossattention" | |
| ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" | |
| # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple | |
| cross_attn_past_key_value = past_key_value[-2: | |
| ] if past_key_value is not None else None | |
| cross_attention_outputs = self.crossattention( | |
| attention_output, | |
| attention_mask, | |
| head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| cross_attn_past_key_value, | |
| output_attentions, | |
| ) | |
| attention_output = cross_attention_outputs[0] | |
| # add cross attentions if we output attention weights | |
| outputs = outputs + cross_attention_outputs[1:-1] | |
| # add cross-attn cache to positions 3,4 of present_key_value tuple | |
| cross_attn_present_key_value = cross_attention_outputs[-1] | |
| present_key_value = present_key_value + cross_attn_present_key_value | |
| layer_output = apply_chunking_to_forward( | |
| self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
| ) | |
| outputs = (layer_output,) + outputs | |
| # if decoder, return the attn key/values as the last output | |
| if self.is_decoder: | |
| outputs = outputs + (present_key_value,) | |
| return outputs | |
| def feed_forward_chunk(self, attention_output): | |
| ln_output = self.ln(attention_output) | |
| intermediate_output = self.intermediate(ln_output) | |
| layer_output = self.output(intermediate_output, attention_output) | |
| return layer_output | |
| def roformer_extended_attention_mask(attention_mask, tokentype_ids): | |
| # copy from bert_model.py and | |
| # https://github.com/bojone/bert4keras/blob/8836dc01fa99aa54947a15db5aa60a0ab6c0c036/bert4keras/models.py#L382 | |
| # We create a 3D attention mask from a 2D tensor mask. | |
| # [b, 1, s] | |
| attention_mask_b1s = attention_mask.unsqueeze(1) | |
| # [b, s, 1] | |
| attention_mask_bs1 = attention_mask.unsqueeze(2) | |
| # [b, s, s] | |
| padding_mask_bss = attention_mask_b1s * attention_mask_bs1 | |
| # Convert attention mask to binary: | |
| padding_mask_bss = (padding_mask_bss < 0.5) | |
| # 根据tokentype_ids来获取相应的双向或者单向mask,注意 | |
| # 这里改变了原本实现中的小于等于号,因为megatron中的mask | |
| # 中非mask部分为0,mask部分为1 | |
| idx = torch.cumsum(tokentype_ids, dim=1) | |
| causal_mask = idx[:, None, :] > idx[:, :, None] | |
| # 合并两个mask | |
| mask = torch.logical_or(causal_mask, padding_mask_bss) | |
| mask = mask.unsqueeze(1) # [b, 1, s, s] | |
| return mask | |
| class RoFormerEncoder(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.layer = nn.ModuleList([RoFormerLayer(config) | |
| for _ in range(config.num_hidden_layers)]) | |
| # The final layer norm. We removed the 1st LN, moved LN to each hidden layer and this one | |
| # is simply the final LN (Transformer's BERT has it attached to each hidden layer). | |
| self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| past_key_values=None, | |
| use_cache=None, | |
| output_attentions=False, | |
| output_hidden_states=False, | |
| return_dict=True, | |
| ): | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attentions = () if output_attentions else None | |
| all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
| next_decoder_cache = () if use_cache else None | |
| for i, layer_module in enumerate(self.layer): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| layer_head_mask = head_mask[i] if head_mask is not None else None | |
| past_key_value = past_key_values[i] if past_key_values is not None else None | |
| if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
| if use_cache: | |
| logger.warn( | |
| "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " | |
| "`use_cache=False`..." | |
| ) | |
| use_cache = False | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, past_key_value, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer_module), | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ) | |
| else: | |
| layer_outputs = layer_module( | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| past_key_value, | |
| output_attentions, | |
| ) | |
| # Because we moved the layer-norm at the end of the hidden layer, we have non-normali- | |
| # zed data here. If that's really needed, we must apply LN to match Transformer's BERT. | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[-1],) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
| if self.config.add_cross_attention: | |
| all_cross_attentions = all_cross_attentions + \ | |
| (layer_outputs[2],) | |
| # Finalize the hidden states. | |
| hidden_states = self.ln(hidden_states) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [ | |
| hidden_states, | |
| next_decoder_cache, | |
| all_hidden_states, | |
| all_self_attentions, | |
| all_cross_attentions, | |
| ] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_decoder_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->RoFormer | |
| class RoFormerPooler(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| def forward(self, hidden_states): | |
| # We "pool" the model by simply taking the hidden state corresponding | |
| # to the first token. | |
| first_token_tensor = hidden_states[:, 0] | |
| pooled_output = self.dense(first_token_tensor) | |
| pooled_output = self.activation(pooled_output) | |
| return pooled_output | |
| # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->RoFormer | |
| class RoFormerPredictionHeadTransform(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| if isinstance(config.hidden_act, str): | |
| self.transform_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.transform_act_fn = config.hidden_act | |
| self.LayerNorm = nn.LayerNorm( | |
| config.hidden_size, eps=config.layer_norm_eps) | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.transform_act_fn(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->RoFormer | |
| class RoFormerLMPredictionHead(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.transform = RoFormerPredictionHeadTransform(config) | |
| # The output weights are the same as the input embeddings, but there is | |
| # an output-only bias for each token. | |
| self.decoder = nn.Linear( | |
| config.hidden_size, config.vocab_size, bias=False) | |
| self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
| # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
| self.decoder.bias = self.bias | |
| def forward(self, hidden_states): | |
| hidden_states = self.transform(hidden_states) | |
| hidden_states = self.decoder(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->RoFormer | |
| class RoFormerOnlyMLMHead(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.predictions = RoFormerLMPredictionHead(config) | |
| def forward(self, sequence_output): | |
| prediction_scores = self.predictions(sequence_output) | |
| return prediction_scores | |
| # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->RoFormer | |
| class RoFormerOnlyNSPHead(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
| def forward(self, pooled_output): | |
| seq_relationship_score = self.seq_relationship(pooled_output) | |
| return seq_relationship_score | |
| # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->RoFormer | |
| class RoFormerPreTrainingHeads(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.predictions = RoFormerLMPredictionHead(config) | |
| self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
| def forward(self, sequence_output, pooled_output): | |
| prediction_scores = self.predictions(sequence_output) | |
| seq_relationship_score = self.seq_relationship(pooled_output) | |
| return prediction_scores, seq_relationship_score | |
| class RoFormerPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = RoFormerConfig | |
| load_tf_weights = load_tf_weights_in_RoFormer | |
| base_model_prefix = "bert" | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| if isinstance(module, (nn.Linear, nn.Embedding)): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_( | |
| mean=0.0, std=self.config.initializer_range) | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| # Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->RoFormer | |
| class RoFormerForPreTrainingOutput(ModelOutput): | |
| """ | |
| Output type of :class:`~transformers.RoFormerForPreTraining`. | |
| Args: | |
| loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): | |
| Total loss as the sum of the masked language modeling loss and the next sequence prediction | |
| (classification) loss. | |
| prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): | |
| Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
| seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): | |
| Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation | |
| before SoftMax). | |
| hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
| of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| prediction_logits: torch.FloatTensor = None | |
| seq_relationship_logits: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| RoFormer_START_DOCSTRING = r""" | |
| This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
| methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
| pruning heads etc.) | |
| This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
| subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
| general usage and behavior. | |
| Parameters: | |
| config (:class:`~transformers.RoFormerConfig`): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
| weights. | |
| """ | |
| RoFormer_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): | |
| Indices of input sequence tokens in the vocabulary. | |
| Indices can be obtained using :class:`~transformers.BertTokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
| details. | |
| `What are input IDs? <../glossary.html#input-ids>`__ | |
| attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
| Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
| 1]``: | |
| - 0 corresponds to a `sentence A` token, | |
| - 1 corresponds to a `sentence B` token. | |
| `What are token type IDs? <../glossary.html#token-type-ids>`_ | |
| position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
| config.max_position_embeddings - 1]``. | |
| `What are position IDs? <../glossary.html#position-ids>`_ | |
| head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
| vectors than the model's internal embedding lookup matrix. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
| tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
| more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| """ | |
| class RoFormerModel(RoFormerPreTrainedModel): | |
| """ | |
| The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | |
| cross-attention is added between the self-attention layers, following the architecture described in `Attention is | |
| all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, | |
| Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. | |
| To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration | |
| set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder` | |
| argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an | |
| input to the forward pass. | |
| """ | |
| def __init__(self, config, add_pooling_layer=True): | |
| super().__init__(config) | |
| self.config = config | |
| self.embeddings = RoFormerEmbeddings(config) | |
| self.encoder = RoFormerEncoder(config) | |
| self.pooler = RoFormerPooler(config) if add_pooling_layer else None | |
| self.init_weights() | |
| def get_input_embeddings(self): | |
| return self.embeddings.word_embeddings | |
| def set_input_embeddings(self, value): | |
| self.embeddings.word_embeddings = value | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| past_key_values=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
| the model is configured as a decoder. | |
| encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
| the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
| Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
| If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` | |
| (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` | |
| instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. | |
| use_cache (:obj:`bool`, `optional`): | |
| If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
| decoding (see :obj:`past_key_values`). | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if self.config.is_decoder: | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| else: | |
| use_cache = False | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError( | |
| "You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| batch_size, seq_length = input_shape | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| batch_size, seq_length = input_shape | |
| else: | |
| raise ValueError( | |
| "You have to specify either input_ids or inputs_embeds") | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| # past_key_values_length | |
| past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
| if attention_mask is None: | |
| attention_mask = torch.ones( | |
| ((batch_size, seq_length + past_key_values_length)), device=device) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros( | |
| input_shape, dtype=torch.long, device=device) | |
| # @IDEA modified -> get_extended_attention_mask -> roformer_extended_attention_mask | |
| extended_attention_mask = roformer_extended_attention_mask( | |
| attention_mask, token_type_ids) | |
| """ | |
| # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
| # ourselves in which case we just need to make it broadcastable to all heads. | |
| extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
| """ | |
| # If a 2D or 3D attention mask is provided for the cross-attention | |
| # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| if self.config.is_decoder and encoder_hidden_states is not None: | |
| encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
| encoder_hidden_shape = ( | |
| encoder_batch_size, encoder_sequence_length) | |
| if encoder_attention_mask is None: | |
| encoder_attention_mask = torch.ones( | |
| encoder_hidden_shape, device=device) | |
| encoder_extended_attention_mask = self.invert_attention_mask( | |
| encoder_attention_mask) | |
| else: | |
| encoder_extended_attention_mask = None | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| head_mask = self.get_head_mask( | |
| head_mask, self.config.num_hidden_layers) | |
| embedding_output = self.embeddings( | |
| input_ids=input_ids, | |
| position_ids=position_ids, | |
| token_type_ids=token_type_ids, | |
| inputs_embeds=inputs_embeds, | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| encoder_outputs = self.encoder( | |
| embedding_output, | |
| attention_mask=extended_attention_mask, | |
| head_mask=head_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_extended_attention_mask, | |
| past_key_values=past_key_values, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = encoder_outputs[0] | |
| pooled_output = self.pooler( | |
| sequence_output) if self.pooler is not None else None | |
| if not return_dict: | |
| return (sequence_output, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPoolingAndCrossAttentions( | |
| last_hidden_state=sequence_output, | |
| pooler_output=pooled_output, | |
| past_key_values=encoder_outputs.past_key_values, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| cross_attentions=encoder_outputs.cross_attentions, | |
| ) | |
| class RoFormerForPreTraining(RoFormerPreTrainedModel): | |
| def __init__(self, config, add_binary_head=True): | |
| super().__init__(config) | |
| self.bert = RoFormerModel(config) | |
| self.cls = RoFormerPreTrainingHeads(config) | |
| self.init_weights() | |
| def get_output_embeddings(self): | |
| return self.cls.predictions.decoder | |
| def set_output_embeddings(self, new_embeddings): | |
| self.cls.predictions.decoder = new_embeddings | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| next_sentence_label=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`): | |
| Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
| config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
| (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
| next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): | |
| Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair | |
| (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: | |
| - 0 indicates sequence B is a continuation of sequence A, | |
| - 1 indicates sequence B is a random sequence. | |
| kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): | |
| Used to hide legacy arguments that have been deprecated. | |
| Returns: | |
| Example:: | |
| >>> from transformers import BertTokenizer, RoFormerForPreTraining | |
| >>> import torch | |
| >>> tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m') | |
| >>> model = RoFormerForPreTraining.from_pretrained('nvidia/megatron-bert-cased-345m') | |
| >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> prediction_logits = outputs.prediction_logits | |
| >>> seq_relationship_logits = outputs.seq_relationship_logits | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.bert( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output, pooled_output = outputs[:2] | |
| prediction_scores, seq_relationship_score = self.cls( | |
| sequence_output, pooled_output) | |
| total_loss = None | |
| if labels is not None and next_sentence_label is not None: | |
| loss_fct = CrossEntropyLoss() | |
| masked_lm_loss = loss_fct( | |
| prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
| next_sentence_loss = loss_fct( | |
| seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
| total_loss = masked_lm_loss + next_sentence_loss | |
| if not return_dict: | |
| output = (prediction_scores, seq_relationship_score) + outputs[2:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return RoFormerForPreTrainingOutput( | |
| loss=total_loss, | |
| prediction_logits=prediction_scores, | |
| seq_relationship_logits=seq_relationship_score, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class RoFormerForCausalLM(RoFormerPreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| _keys_to_ignore_on_load_missing = [ | |
| r"position_ids", r"predictions.decoder.bias"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| if not config.is_decoder: | |
| logger.warning( | |
| "If you want to use `RoFormerForCausalLM` as a standalone, add `is_decoder=True.`") | |
| self.bert = RoFormerModel(config, add_pooling_layer=False) | |
| self.cls = RoFormerOnlyMLMHead(config) | |
| self.init_weights() | |
| def get_output_embeddings(self): | |
| return self.cls.predictions.decoder | |
| def set_output_embeddings(self, new_embeddings): | |
| self.cls.predictions.decoder = new_embeddings | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| labels=None, | |
| past_key_values=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
| the model is configured as a decoder. | |
| encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
| the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in | |
| ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are | |
| ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` | |
| past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
| Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
| If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` | |
| (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` | |
| instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. | |
| use_cache (:obj:`bool`, `optional`): | |
| If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
| decoding (see :obj:`past_key_values`). | |
| Returns: | |
| Example:: | |
| >>> from transformers import BertTokenizer, RoFormerForCausalLM, RoFormerConfig | |
| >>> import torch | |
| >>> tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m') | |
| >>> model = RoFormerLMHeadModel.from_pretrained('nvidia/megatron-bert-cased-345m', is_decoder=True) | |
| >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> prediction_logits = outputs.logits | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if labels is not None: | |
| use_cache = False | |
| outputs = self.bert( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| past_key_values=past_key_values, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| prediction_scores = self.cls(sequence_output) | |
| lm_loss = None | |
| if labels is not None: | |
| # we are doing next-token prediction; shift prediction scores and input ids by one | |
| shifted_prediction_scores = prediction_scores[:, | |
| :-1, :].contiguous() | |
| labels = labels[:, 1:].contiguous() | |
| loss_fct = CrossEntropyLoss() | |
| lm_loss = loss_fct( | |
| shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (prediction_scores,) + outputs[2:] | |
| return ((lm_loss,) + output) if lm_loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=lm_loss, | |
| logits=prediction_scores, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| ) | |
| def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): | |
| input_shape = input_ids.shape | |
| # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
| if attention_mask is None: | |
| attention_mask = input_ids.new_ones(input_shape) | |
| # cut decoder_input_ids if past is used | |
| if past is not None: | |
| input_ids = input_ids[:, -1:] | |
| return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} | |
| def _reorder_cache(self, past, beam_idx): | |
| reordered_past = () | |
| for layer_past in past: | |
| reordered_past += (tuple(past_state.index_select(0, beam_idx) | |
| for past_state in layer_past),) | |
| return reordered_past | |
| class RoFormerForMaskedLM(RoFormerPreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [r"pooler", r"seq_relationship"] | |
| _keys_to_ignore_on_load_missing = [ | |
| r"position_ids", r"predictions.decoder.bias"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| if config.is_decoder: | |
| logger.warning( | |
| "If you want to use `RoFormerForMaskedLM` make sure `config.is_decoder=False` for " | |
| "bi-directional self-attention." | |
| ) | |
| self.bert = RoFormerModel(config, add_pooling_layer=False) | |
| self.cls = RoFormerOnlyMLMHead(config) | |
| self.init_weights() | |
| def get_output_embeddings(self): | |
| return self.cls.predictions.decoder | |
| def set_output_embeddings(self, new_embeddings): | |
| self.cls.predictions.decoder = new_embeddings | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
| config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
| (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.bert( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| prediction_scores = self.cls(sequence_output) | |
| masked_lm_loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() # -100 index = padding token | |
| masked_lm_loss = loss_fct( | |
| prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (prediction_scores,) + outputs[2:] | |
| return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
| return MaskedLMOutput( | |
| loss=masked_lm_loss, | |
| logits=prediction_scores, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): | |
| input_shape = input_ids.shape | |
| effective_batch_size = input_shape[0] | |
| # add a dummy token | |
| assert self.config.pad_token_id is not None, "The PAD token should be defined for generation" | |
| attention_mask = torch.cat( | |
| [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) | |
| dummy_token = torch.full( | |
| (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device | |
| ) | |
| input_ids = torch.cat([input_ids, dummy_token], dim=1) | |
| return {"input_ids": input_ids, "attention_mask": attention_mask} | |
| class RoFormerForNextSentencePrediction(RoFormerPreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [r"predictions"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.bert = RoFormerModel(config) | |
| self.cls = RoFormerOnlyNSPHead(config) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| **kwargs | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair | |
| (see ``input_ids`` docstring). Indices should be in ``[0, 1]``: | |
| - 0 indicates sequence B is a continuation of sequence A, | |
| - 1 indicates sequence B is a random sequence. | |
| Returns: | |
| Example:: | |
| >>> from transformers import BertTokenizer, RoFormerForNextSentencePrediction | |
| >>> import torch | |
| >>> tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m') | |
| >>> model = RoFormerForNextSentencePrediction.from_pretrained('nvidia/megatron-bert-cased-345m') | |
| >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." | |
| >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." | |
| >>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt') | |
| >>> outputs = model(**encoding, labels=torch.LongTensor([1])) | |
| >>> logits = outputs.logits | |
| >>> assert logits[0, 0] < logits[0, 1] # next sentence was random | |
| """ | |
| if "next_sentence_label" in kwargs: | |
| warnings.warn( | |
| "The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.", | |
| FutureWarning, | |
| ) | |
| labels = kwargs.pop("next_sentence_label") | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.bert( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = outputs[1] | |
| seq_relationship_scores = self.cls(pooled_output) | |
| next_sentence_loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| next_sentence_loss = loss_fct( | |
| seq_relationship_scores.view(-1, 2), labels.view(-1)) | |
| if not return_dict: | |
| output = (seq_relationship_scores,) + outputs[2:] | |
| return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output | |
| return NextSentencePredictorOutput( | |
| loss=next_sentence_loss, | |
| logits=seq_relationship_scores, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class RoFormerForSequenceClassification(RoFormerPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.bert = RoFormerModel(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
| config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
| If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.bert( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = outputs[1] | |
| pooled_output = self.dropout(pooled_output) | |
| logits = self.classifier(pooled_output) | |
| loss = None | |
| if labels is not None: | |
| if self.num_labels == 1: | |
| # We are doing regression | |
| loss_fct = MSELoss() | |
| loss = loss_fct(logits.view(-1), labels.view(-1)) | |
| else: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct( | |
| logits.view(-1, self.num_labels), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class RoFormerForMultipleChoice(RoFormerPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.bert = RoFormerModel(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, 1) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
| num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See | |
| :obj:`input_ids` above) | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
| input_ids = input_ids.view(-1, input_ids.size(-1) | |
| ) if input_ids is not None else None | |
| attention_mask = attention_mask.view( | |
| -1, attention_mask.size(-1)) if attention_mask is not None else None | |
| token_type_ids = token_type_ids.view( | |
| -1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
| position_ids = position_ids.view(-1, position_ids.size(-1) | |
| ) if position_ids is not None else None | |
| inputs_embeds = ( | |
| inputs_embeds.view(-1, inputs_embeds.size(-2), | |
| inputs_embeds.size(-1)) | |
| if inputs_embeds is not None | |
| else None | |
| ) | |
| outputs = self.bert( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = outputs[1] | |
| pooled_output = self.dropout(pooled_output) | |
| logits = self.classifier(pooled_output) | |
| reshaped_logits = logits.view(-1, num_choices) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(reshaped_logits, labels) | |
| if not return_dict: | |
| output = (reshaped_logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return MultipleChoiceModelOutput( | |
| loss=loss, | |
| logits=reshaped_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class RoFormerForTokenClassification(RoFormerPreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.bert = RoFormerModel(config, add_pooling_layer=False) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - | |
| 1]``. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.bert( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| sequence_output = self.dropout(sequence_output) | |
| logits = self.classifier(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| # Only keep active parts of the loss | |
| if attention_mask is not None: | |
| active_loss = attention_mask.view(-1) == 1 | |
| active_logits = logits.view(-1, self.num_labels) | |
| active_labels = torch.where( | |
| active_loss, labels.view(-1), torch.tensor( | |
| loss_fct.ignore_index).type_as(labels) | |
| ) | |
| loss = loss_fct(active_logits, active_labels) | |
| else: | |
| loss = loss_fct( | |
| logits.view(-1, self.num_labels), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TokenClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class RoFormerForQuestionAnswering(RoFormerPreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.bert = RoFormerModel(config, add_pooling_layer=False) | |
| self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| start_positions=None, | |
| end_positions=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
| sequence are not taken into account for computing the loss. | |
| end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
| sequence are not taken into account for computing the loss. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.bert( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.qa_outputs(sequence_output) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1).contiguous() | |
| end_logits = end_logits.squeeze(-1).contiguous() | |
| total_loss = None | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions = start_positions.clamp(0, ignored_index) | |
| end_positions = end_positions.clamp(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if not return_dict: | |
| output = (start_logits, end_logits) + outputs[2:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return QuestionAnsweringModelOutput( | |
| loss=total_loss, | |
| start_logits=start_logits, | |
| end_logits=end_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |