Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import os
|
|
| 2 |
import json
|
| 3 |
import re
|
| 4 |
import uuid
|
|
|
|
|
|
|
| 5 |
from datetime import datetime
|
| 6 |
import openai
|
| 7 |
import gradio as gr
|
|
@@ -31,12 +33,9 @@ GRADER_MODEL = "gpt-4o-mini"
|
|
| 31 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 32 |
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
| 33 |
|
| 34 |
-
# Models that only support default temperature
|
| 35 |
MODEL_DEFAULT_TEMP = ["o4-mini"]
|
| 36 |
|
| 37 |
-
# Local JSON file for storing runs
|
| 38 |
-
RUNS_FILE = "/data/runs2.json"
|
| 39 |
-
|
| 40 |
# -------------------------
|
| 41 |
# Helper to read JSONL
|
| 42 |
# -------------------------
|
|
@@ -67,9 +66,9 @@ class HealthBenchEval:
|
|
| 67 |
|
| 68 |
self.scores = []
|
| 69 |
self.htmls = ""
|
| 70 |
-
self.sample_records = []
|
| 71 |
self.seed = seed
|
| 72 |
-
self.eval_id = str(uuid.uuid4())
|
| 73 |
|
| 74 |
def score_with_grader(self, prompt_text, completion_text, example_index):
|
| 75 |
prompt = f"""
|
|
@@ -96,10 +95,7 @@ Return only a number between 0 and 1.
|
|
| 96 |
return 0.0
|
| 97 |
|
| 98 |
def generate_with_candidate(self, candidate_model, system_prompt, prompt_text, example_index, max_tokens=1024):
|
| 99 |
-
|
| 100 |
-
Generate completion with retry logic and better error logging.
|
| 101 |
-
"""
|
| 102 |
-
for attempt in range(3): # retry up to 3 times
|
| 103 |
try:
|
| 104 |
if candidate_model.startswith("gemini"):
|
| 105 |
model = genai.GenerativeModel(candidate_model)
|
|
@@ -119,7 +115,6 @@ Return only a number between 0 and 1.
|
|
| 119 |
messages.append({"role": "system", "content": system_prompt})
|
| 120 |
messages.append({"role": "user", "content": prompt_text})
|
| 121 |
|
| 122 |
-
# Skip temperature for models that don't support it
|
| 123 |
if candidate_model in MODEL_DEFAULT_TEMP:
|
| 124 |
resp = openai.chat.completions.create(
|
| 125 |
model=candidate_model,
|
|
@@ -134,7 +129,6 @@ Return only a number between 0 and 1.
|
|
| 134 |
max_completion_tokens=max_tokens
|
| 135 |
)
|
| 136 |
completion = resp.choices[0].message.content
|
| 137 |
-
print(resp)
|
| 138 |
|
| 139 |
return completion.strip() if hasattr(completion, "strip") else completion
|
| 140 |
|
|
@@ -142,7 +136,7 @@ Return only a number between 0 and 1.
|
|
| 142 |
print(f"[ERROR] Candidate model {candidate_model} failed at dataset index {example_index} (attempt {attempt+1}/3)")
|
| 143 |
print(f"Prompt text: {prompt_text[:200]}...")
|
| 144 |
print(f"Error: {e}")
|
| 145 |
-
if attempt == 2:
|
| 146 |
return f"[ERROR after 3 retries: {str(e)}]"
|
| 147 |
|
| 148 |
def __call__(self, candidate_model, system_prompt, eval_subset=""):
|
|
@@ -150,21 +144,19 @@ Return only a number between 0 and 1.
|
|
| 150 |
|
| 151 |
cumulative_total = 0.0
|
| 152 |
for i, example in enumerate(self.dataset):
|
| 153 |
-
dataset_index = self.indices[i]
|
| 154 |
prompt_obj = example.get("prompt", [])
|
| 155 |
prompt_text = " ".join([m.get("content", "") for m in prompt_obj])
|
| 156 |
|
| 157 |
completion_text = self.generate_with_candidate(candidate_model, system_prompt, prompt_text, dataset_index)
|
| 158 |
score = self.score_with_grader(prompt_text, completion_text, dataset_index)
|
| 159 |
|
| 160 |
-
# update running totals (per eval_id)
|
| 161 |
cumulative_total += score
|
| 162 |
cumulative_avg = cumulative_total / (i + 1)
|
| 163 |
|
| 164 |
self.scores.append(score)
|
| 165 |
html_lines.append(f"<li>Dataset Row {dataset_index}: Score = {score:.3f}</li>")
|
| 166 |
|
| 167 |
-
# create individual sample record
|
| 168 |
self.sample_records.append({
|
| 169 |
"eval_id": self.eval_id,
|
| 170 |
"timestamp": datetime.utcnow().isoformat(),
|
|
@@ -184,19 +176,9 @@ Return only a number between 0 and 1.
|
|
| 184 |
return self
|
| 185 |
|
| 186 |
# -------------------------
|
| 187 |
-
#
|
| 188 |
# -------------------------
|
| 189 |
-
def generate_runs_html():
|
| 190 |
-
runs = []
|
| 191 |
-
if os.path.exists(RUNS_FILE):
|
| 192 |
-
try:
|
| 193 |
-
with open(RUNS_FILE, "r", encoding="utf-8") as f:
|
| 194 |
-
runs = json.load(f)
|
| 195 |
-
if not isinstance(runs, list):
|
| 196 |
-
runs = []
|
| 197 |
-
except (json.JSONDecodeError, ValueError):
|
| 198 |
-
runs = []
|
| 199 |
-
|
| 200 |
if runs:
|
| 201 |
table_rows = ""
|
| 202 |
for r in reversed(runs):
|
|
@@ -244,24 +226,40 @@ def generate_runs_html():
|
|
| 244 |
"""
|
| 245 |
else:
|
| 246 |
runs_html = "<p>No evaluations yet.</p>"
|
| 247 |
-
|
| 248 |
return runs_html
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
# -------------------------
|
| 259 |
# Gradio UI function
|
| 260 |
# -------------------------
|
| 261 |
-
def run_eval_ui(candidate_model, system_prompt, eval_subset, num_examples, seed):
|
| 262 |
dataset_file = DATASET_FILES.get(eval_subset)
|
| 263 |
if not dataset_file:
|
| 264 |
-
return "<p style='color:red'>Invalid dataset</p>", {}, generate_runs_html()
|
| 265 |
|
| 266 |
seed_val = int(seed) if seed else None
|
| 267 |
num_val = int(num_examples) if num_examples else None
|
|
@@ -269,23 +267,8 @@ def run_eval_ui(candidate_model, system_prompt, eval_subset, num_examples, seed)
|
|
| 269 |
eval_obj = HealthBenchEval(dataset_file, num_examples=num_val, seed=seed_val)
|
| 270 |
result = eval_obj(candidate_model, system_prompt, eval_subset=eval_subset)
|
| 271 |
|
| 272 |
-
# Load existing runs
|
| 273 |
-
runs = []
|
| 274 |
-
if os.path.exists(RUNS_FILE):
|
| 275 |
-
try:
|
| 276 |
-
with open(RUNS_FILE, "r", encoding="utf-8") as f:
|
| 277 |
-
runs = json.load(f)
|
| 278 |
-
if not isinstance(runs, list):
|
| 279 |
-
runs = []
|
| 280 |
-
except (json.JSONDecodeError, ValueError):
|
| 281 |
-
runs = []
|
| 282 |
-
|
| 283 |
runs.extend(result.sample_records)
|
| 284 |
-
|
| 285 |
-
with open(RUNS_FILE, "w", encoding="utf-8") as f:
|
| 286 |
-
json.dump(runs, f, indent=2)
|
| 287 |
-
|
| 288 |
-
runs_html = generate_runs_html()
|
| 289 |
|
| 290 |
metrics = {
|
| 291 |
"eval_id": result.eval_id,
|
|
@@ -295,7 +278,10 @@ def run_eval_ui(candidate_model, system_prompt, eval_subset, num_examples, seed)
|
|
| 295 |
"seed": seed_val
|
| 296 |
}
|
| 297 |
|
| 298 |
-
return result.htmls, metrics, runs_html
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
# -------------------------
|
| 301 |
# Gradio UI
|
|
@@ -328,22 +314,32 @@ def ui():
|
|
| 328 |
|
| 329 |
output_html = gr.HTML(label="Evaluation Report")
|
| 330 |
output_metrics = gr.JSON(label="Metrics JSON")
|
| 331 |
-
output_all_runs = gr.HTML(label="Evaluation History"
|
|
|
|
| 332 |
|
| 333 |
with gr.Row():
|
| 334 |
clear_btn = gr.Button("Clear History")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
-
# Connect buttons
|
| 337 |
run_btn.click(
|
| 338 |
fn=run_eval_ui,
|
| 339 |
-
inputs=[candidate_model, system_prompt, eval_subset, num_examples, seed],
|
| 340 |
-
outputs=[output_html, output_metrics, output_all_runs]
|
| 341 |
)
|
| 342 |
|
| 343 |
clear_btn.click(
|
| 344 |
fn=clear_runs,
|
| 345 |
inputs=[],
|
| 346 |
-
outputs=[output_all_runs]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
)
|
| 348 |
|
| 349 |
return demo
|
|
|
|
| 2 |
import json
|
| 3 |
import re
|
| 4 |
import uuid
|
| 5 |
+
import io
|
| 6 |
+
import csv
|
| 7 |
from datetime import datetime
|
| 8 |
import openai
|
| 9 |
import gradio as gr
|
|
|
|
| 33 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 34 |
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
| 35 |
|
| 36 |
+
# Models that only support default temperature
|
| 37 |
MODEL_DEFAULT_TEMP = ["o4-mini"]
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
# -------------------------
|
| 40 |
# Helper to read JSONL
|
| 41 |
# -------------------------
|
|
|
|
| 66 |
|
| 67 |
self.scores = []
|
| 68 |
self.htmls = ""
|
| 69 |
+
self.sample_records = []
|
| 70 |
self.seed = seed
|
| 71 |
+
self.eval_id = str(uuid.uuid4())
|
| 72 |
|
| 73 |
def score_with_grader(self, prompt_text, completion_text, example_index):
|
| 74 |
prompt = f"""
|
|
|
|
| 95 |
return 0.0
|
| 96 |
|
| 97 |
def generate_with_candidate(self, candidate_model, system_prompt, prompt_text, example_index, max_tokens=1024):
|
| 98 |
+
for attempt in range(3):
|
|
|
|
|
|
|
|
|
|
| 99 |
try:
|
| 100 |
if candidate_model.startswith("gemini"):
|
| 101 |
model = genai.GenerativeModel(candidate_model)
|
|
|
|
| 115 |
messages.append({"role": "system", "content": system_prompt})
|
| 116 |
messages.append({"role": "user", "content": prompt_text})
|
| 117 |
|
|
|
|
| 118 |
if candidate_model in MODEL_DEFAULT_TEMP:
|
| 119 |
resp = openai.chat.completions.create(
|
| 120 |
model=candidate_model,
|
|
|
|
| 129 |
max_completion_tokens=max_tokens
|
| 130 |
)
|
| 131 |
completion = resp.choices[0].message.content
|
|
|
|
| 132 |
|
| 133 |
return completion.strip() if hasattr(completion, "strip") else completion
|
| 134 |
|
|
|
|
| 136 |
print(f"[ERROR] Candidate model {candidate_model} failed at dataset index {example_index} (attempt {attempt+1}/3)")
|
| 137 |
print(f"Prompt text: {prompt_text[:200]}...")
|
| 138 |
print(f"Error: {e}")
|
| 139 |
+
if attempt == 2:
|
| 140 |
return f"[ERROR after 3 retries: {str(e)}]"
|
| 141 |
|
| 142 |
def __call__(self, candidate_model, system_prompt, eval_subset=""):
|
|
|
|
| 144 |
|
| 145 |
cumulative_total = 0.0
|
| 146 |
for i, example in enumerate(self.dataset):
|
| 147 |
+
dataset_index = self.indices[i]
|
| 148 |
prompt_obj = example.get("prompt", [])
|
| 149 |
prompt_text = " ".join([m.get("content", "") for m in prompt_obj])
|
| 150 |
|
| 151 |
completion_text = self.generate_with_candidate(candidate_model, system_prompt, prompt_text, dataset_index)
|
| 152 |
score = self.score_with_grader(prompt_text, completion_text, dataset_index)
|
| 153 |
|
|
|
|
| 154 |
cumulative_total += score
|
| 155 |
cumulative_avg = cumulative_total / (i + 1)
|
| 156 |
|
| 157 |
self.scores.append(score)
|
| 158 |
html_lines.append(f"<li>Dataset Row {dataset_index}: Score = {score:.3f}</li>")
|
| 159 |
|
|
|
|
| 160 |
self.sample_records.append({
|
| 161 |
"eval_id": self.eval_id,
|
| 162 |
"timestamp": datetime.utcnow().isoformat(),
|
|
|
|
| 176 |
return self
|
| 177 |
|
| 178 |
# -------------------------
|
| 179 |
+
# Helpers
|
| 180 |
# -------------------------
|
| 181 |
+
def generate_runs_html(runs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
if runs:
|
| 183 |
table_rows = ""
|
| 184 |
for r in reversed(runs):
|
|
|
|
| 226 |
"""
|
| 227 |
else:
|
| 228 |
runs_html = "<p>No evaluations yet.</p>"
|
|
|
|
| 229 |
return runs_html
|
| 230 |
|
| 231 |
+
def generate_csv(runs):
|
| 232 |
+
if not runs:
|
| 233 |
+
return None
|
| 234 |
+
output = io.StringIO()
|
| 235 |
+
fieldnames = ["eval_id", "timestamp", "candidate_model", "system_prompt", "eval_subset",
|
| 236 |
+
"seed", "dataset_index", "prompt_text", "completion_text", "score",
|
| 237 |
+
"cumulative_total", "cumulative_avg"]
|
| 238 |
+
writer = csv.DictWriter(output, fieldnames=fieldnames)
|
| 239 |
+
writer.writeheader()
|
| 240 |
+
for run in runs:
|
| 241 |
+
writer.writerow(run)
|
| 242 |
+
csv_data = output.getvalue()
|
| 243 |
+
output.close()
|
| 244 |
+
return csv_data
|
| 245 |
+
|
| 246 |
+
def prepare_download(runs):
|
| 247 |
+
csv_data = generate_csv(runs)
|
| 248 |
+
if not csv_data:
|
| 249 |
+
return None
|
| 250 |
+
filename = f"eval_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
| 251 |
+
filepath = os.path.join("/tmp", filename)
|
| 252 |
+
with open(filepath, "w", encoding="utf-8") as f:
|
| 253 |
+
f.write(csv_data)
|
| 254 |
+
return filepath
|
| 255 |
|
| 256 |
# -------------------------
|
| 257 |
# Gradio UI function
|
| 258 |
# -------------------------
|
| 259 |
+
def run_eval_ui(candidate_model, system_prompt, eval_subset, num_examples, seed, runs):
|
| 260 |
dataset_file = DATASET_FILES.get(eval_subset)
|
| 261 |
if not dataset_file:
|
| 262 |
+
return "<p style='color:red'>Invalid dataset</p>", {}, generate_runs_html(runs), runs
|
| 263 |
|
| 264 |
seed_val = int(seed) if seed else None
|
| 265 |
num_val = int(num_examples) if num_examples else None
|
|
|
|
| 267 |
eval_obj = HealthBenchEval(dataset_file, num_examples=num_val, seed=seed_val)
|
| 268 |
result = eval_obj(candidate_model, system_prompt, eval_subset=eval_subset)
|
| 269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
runs.extend(result.sample_records)
|
| 271 |
+
runs_html = generate_runs_html(runs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
metrics = {
|
| 274 |
"eval_id": result.eval_id,
|
|
|
|
| 278 |
"seed": seed_val
|
| 279 |
}
|
| 280 |
|
| 281 |
+
return result.htmls, metrics, runs_html, runs
|
| 282 |
+
|
| 283 |
+
def clear_runs():
|
| 284 |
+
return "<p>No evaluations yet.</p>", []
|
| 285 |
|
| 286 |
# -------------------------
|
| 287 |
# Gradio UI
|
|
|
|
| 314 |
|
| 315 |
output_html = gr.HTML(label="Evaluation Report")
|
| 316 |
output_metrics = gr.JSON(label="Metrics JSON")
|
| 317 |
+
output_all_runs = gr.HTML(label="Evaluation History")
|
| 318 |
+
session_runs = gr.State([])
|
| 319 |
|
| 320 |
with gr.Row():
|
| 321 |
clear_btn = gr.Button("Clear History")
|
| 322 |
+
download_btn = gr.DownloadButton(
|
| 323 |
+
label="Download CSV",
|
| 324 |
+
variant="secondary"
|
| 325 |
+
)
|
| 326 |
|
|
|
|
| 327 |
run_btn.click(
|
| 328 |
fn=run_eval_ui,
|
| 329 |
+
inputs=[candidate_model, system_prompt, eval_subset, num_examples, seed, session_runs],
|
| 330 |
+
outputs=[output_html, output_metrics, output_all_runs, session_runs]
|
| 331 |
)
|
| 332 |
|
| 333 |
clear_btn.click(
|
| 334 |
fn=clear_runs,
|
| 335 |
inputs=[],
|
| 336 |
+
outputs=[output_all_runs, session_runs]
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
download_btn.click(
|
| 340 |
+
fn=prepare_download,
|
| 341 |
+
inputs=[session_runs],
|
| 342 |
+
outputs=[download_btn]
|
| 343 |
)
|
| 344 |
|
| 345 |
return demo
|