Spaces:
Running
on
T4
Running
on
T4
| # -*- coding: utf-8 -*- | |
| import sys | |
| import os | |
| import torch | |
| # Import important files | |
| root_path = os.path.abspath('.') | |
| sys.path.append(root_path) | |
| from architecture.rrdb import RRDBNet | |
| from train_code.train_master import train_master | |
| # Mixed precision training | |
| scaler = torch.cuda.amp.GradScaler() | |
| class train_esrnet(train_master): | |
| def __init__(self, options, args) -> None: | |
| super().__init__(options, args, "esrnet") # Pass a model name unique code | |
| def loss_init(self): | |
| # Prepare pixel loss | |
| self.pixel_loss_load() | |
| def call_model(self): | |
| # Generator Prepare (Don't formet torch.compile if needed) | |
| self.generator = RRDBNet(3, 3, scale=self.options['scale'], num_block=self.options['ESR_blocks_num']).cuda() | |
| # self.generator = torch.compile(self.generator).cuda() | |
| self.generator.train() | |
| def run(self): | |
| self.master_run() | |
| def calculate_loss(self, gen_hr, imgs_hr): | |
| # Generator pixel loss (l1 loss): generated vs. GT | |
| l_g_pix = self.cri_pix(gen_hr, imgs_hr, self.batch_idx) | |
| self.weight_store["pixel_loss"] = l_g_pix | |
| self.generator_loss += l_g_pix | |
| def tensorboard_report(self, iteration): | |
| # self.writer.add_scalar('Loss/train-Generator_Loss-Iteration', self.generator_loss, iteration) | |
| self.writer.add_scalar('Loss/train-Pixel_Loss-Iteration', self.weight_store["pixel_loss"], iteration) | |