Spaces:
Runtime error
Runtime error
| # app.py-12-04-2024-19u45m-CET.py | |
| # | |
| # POE ChatGPT: | |
| # To convert the code from a Chainlit app to a Streamlit app, you'll need to make several modifications. | |
| # Here's the modified code for a Streamlit app: | |
| python | |
| Copy | |
| import os | |
| from typing import List | |
| import streamlit as st | |
| from langchain_community.embeddings import FastEmbedEmbeddings | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.vectorstores import Chroma | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.document_loaders import PyPDFLoader | |
| from langchain_groq import ChatGroq | |
| from langchain.prompts.chat import ( | |
| ChatPromptTemplate, | |
| SystemMessagePromptTemplate, | |
| HumanMessagePromptTemplate, | |
| ) | |
| from langchain.docstore.document import Document | |
| from langchain.memory import ChatMessageHistory, ConversationBufferMemory | |
| st.title("Chat App") | |
| st.write("Upload a PDF file to begin!") | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
| system_template = """Use the following pieces of context to answer the user's question. | |
| If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
| ALWAYS return a "SOURCES" part in your answer. | |
| The "SOURCES" part should be a reference to the source of the document from which you got your answer. | |
| And if the user greets with greetings like Hi, hello, How are you, etc reply accordingly as well. | |
| Example of your response should be: | |
| The answer is foo | |
| SOURCES: xyz | |
| Begin! | |
| ---------------- | |
| {summaries}""" | |
| messages = [ | |
| SystemMessagePromptTemplate.from_template(system_template), | |
| HumanMessagePromptTemplate.from_template("{question}"), | |
| ] | |
| prompt = ChatPromptTemplate.from_messages(messages) | |
| chain_type_kwargs = {"prompt": prompt} | |
| def process_file(file): | |
| with open(file.name, "wb") as f: | |
| f.write(file.read()) | |
| pypdf_loader = PyPDFLoader(file.name) | |
| texts = pypdf_loader.load_and_split() | |
| texts = [text.page_content for text in texts] | |
| return texts | |
| def main(): | |
| files = st.file_uploader("Upload PDF File", type="pdf", key="pdf_upload") | |
| if not files: | |
| return | |
| file = files[0] | |
| st.write(f"Processing `{file.name}`...") | |
| texts = process_file(file) | |
| # Create a metadata for each chunk | |
| metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))] | |
| embeddings = FastEmbedEmbeddings() | |
| docsearch = Chroma.from_texts(texts, embeddings, metadatas=metadatas) | |
| message_history = ChatMessageHistory() | |
| memory = ConversationBufferMemory( | |
| memory_key="chat_history", | |
| output_key="answer", | |
| chat_memory=message_history, | |
| return_messages=True, | |
| ) | |
| chain = ConversationalRetrievalChain.from_llm( | |
| ChatGroq(temperature=0.2, groq_api_key=groq_api_key, model_name='mixtral-8x7b-32768', streaming=True), | |
| chain_type="stuff", | |
| retriever=docsearch.as_retriever(), | |
| memory=memory, | |
| return_source_documents=True, | |
| ) | |
| st.write(f"Processing `{file.name}` done. You can now ask questions!") | |
| while True: | |
| user_input = st.text_input("User Input") | |
| if st.button("Send"): | |
| res = chain.call(user_input) | |
| answer = res["answer"] | |
| source_documents = res["source_documents"] | |
| text_elements = [] | |
| if source_documents: | |
| for source_idx, source_doc in enumerate(source_documents): | |
| source_name = f"source_{source_idx}" | |
| text_elements.append(Document(content=source_doc.page_content, name=source_name)) | |
| source_names = [text_el.name for text_el in text_elements] | |
| if source_names: | |
| answer += f"\nSources: {', '.join(source_names)}" | |
| else: | |
| answer += "\nNo sources found" | |
| st.write(answer) | |
| for source_doc in source_documents: | |
| st.write(source_doc.page_content) |