Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| # Load pre-trained GPT-2 model and tokenizer | |
| model = GPT2LMHeadModel.from_pretrained("gpt2") | |
| tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
| # Define a function to generate color based on text prompt | |
| def generate_color(prompt): | |
| input_ids = tokenizer.encode(prompt, return_tensors='pt') | |
| output = model.generate(input_ids, max_length=50, num_return_sequences=1, no_repeat_ngram_size=2) | |
| color_name = tokenizer.decode(output[0], skip_special_tokens=True) | |
| # Create an image with the generated color | |
| color = [int(ord(char) * 255 / 122) for char in color_name[:3]] | |
| img = np.full((100, 100, 3), color, dtype=np.uint8) | |
| return img | |
| # Create Gradio interface | |
| inputs = gr.Textbox(lines=2, label="Enter a text prompt (e.g., 'a color that represents happiness'):") | |
| output = gr.Image(type="numpy", label="Generated color:") | |
| gr.Interface(fn=generate_color, inputs=inputs, outputs=output, title="AI Color Generator", description="Generate a color based on a text prompt using GPT-2 model.").launch() | |