File size: 17,214 Bytes
499d53b
48613bb
12b38bd
48613bb
 
 
e86c88e
48613bb
e05417c
f7d462d
8c0cb8a
ec0f1c1
 
836c9a8
 
 
 
 
 
 
 
 
 
499d53b
59e6760
48613bb
f7d462d
6998810
f7d462d
 
d1bb67f
 
b514ecb
f7d462d
 
 
 
 
30720a5
f7d462d
23e2d78
 
 
 
 
 
 
c2fcdce
 
 
 
 
23e2d78
 
f7d462d
 
709c564
 
 
 
 
f7d462d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709c564
f7d462d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30720a5
f7d462d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709c564
 
 
 
 
 
f7d462d
 
 
 
 
 
 
 
 
 
 
709c564
 
 
 
 
 
f7d462d
 
 
 
 
 
 
 
 
 
 
30720a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d54f027
 
f73b7a7
d54f027
56014e8
 
a00ddd4
 
 
 
 
 
 
30720a5
a00ddd4
30720a5
a00ddd4
 
 
 
 
30720a5
 
a00ddd4
30720a5
 
 
 
 
 
 
 
 
 
 
 
 
 
a00ddd4
 
 
30720a5
a00ddd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30720a5
a00ddd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30720a5
a00ddd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30720a5
 
 
 
 
 
 
 
 
 
 
 
 
a00ddd4
 
 
 
 
 
30720a5
a00ddd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30720a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a00ddd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30720a5
a00ddd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30720a5
a00ddd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d462d
30720a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709c564
 
30720a5
f7d462d
 
 
 
 
 
d54f027
f7d462d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
---
title: Ragmint MCP Server
emoji: ๐Ÿง 
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: "5.49.1"
app_file: app.py
license: apache-2.0
pinned: true
short_description: MCP server for Ragmint with RAG pipeline optimization
tags:
  - building-mcp-track-enterprise
  - mcp
  - rag
  - llm
  - gradio
  - bayesian-optimization
  - embeddings
  - vector-search
  - gemini
  - retrievers
  - python-library
---

# Ragmint MCP Server
<p align="center">
  <img src="https://raw.githubusercontent.com/andyolivers/ragmint/main/src/ragmint/assets/img/ragmint-banner70.png" height="70px" alt="Ragmint Banner">
</p>

Gradio-based MCP server for Ragmint, enabling **Retrieval-Augmented Generation (RAG) pipeline optimization and tuning** via an MCP interface.

![Python](https://img.shields.io/badge/python-3.9%2B-blue) ![License](https://img.shields.io/badge/license-Apache%202.0-green) ![Status](https://img.shields.io/badge/Status-Active-success) ![MCP](https://img.shields.io/badge/MCP-enabled-brightgreen) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Post-blue)](https://www.linkedin.com/posts/andyolivers_ragmint-mcp-server-a-hugging-face-space-activity-7399028674261348352-P5wy?utm_source=share&utm_medium=member_desktop&rcm=ACoAABanwk4Bp0A-FVwO9wyzwVp0g_yqZoRDptI)

---

## ๐Ÿงฉ Overview

Ragmint MCP Server exposes the full power of **Ragmint**, a modular Python library for **evaluating, optimizing, and tuning RAG pipelines**, through a **Multimodal Control Plane (MCP)**. This allows external clients (like Claude Desktop or Cursor) to **run experiments and tune RAG parameters programmatically**.

## Ragmint

[Ragmint](https://github.com/andyolivers/ragmint) (Retrieval-Augmented Generation Model Inspection & Tuning) is a **modular Python library** for **evaluating, optimizing, and tuning RAG pipelines**. Itโ€™s designed for developers and researchers who want automated hyperparameter optimization, retriever selection, embedding tuning, explainability, and reproducible experiment tracking.

![Python](https://img.shields.io/badge/python-3.9%2B-blue)
![License](https://img.shields.io/badge/license-Apache%202.0-green)
[![PyPI](https://img.shields.io/pypi/v/ragmint?color=blue)](https://pypi.org/project/ragmint/)
[![HF Space](https://img.shields.io/badge/HF-Space-blue)](https://huggingface.co/spaces/andyolivers/ragmint-mcp-server)
![MCP](https://img.shields.io/badge/MCP-Enabled-green) 
![Status](https://img.shields.io/badge/Status-Beta-orange) 
![Optuna](https://img.shields.io/badge/Optuna-Bayesian%20Optimization-6f42c1?logo=optuna&logoColor=white) 
![Google Gemini 2.5](https://img.shields.io/badge/Google%20Gemini-LLM-lightblue?logo=google&logoColor=white)


### Features exposed via MCP:

* โœ… Automated hyperparameter optimization (Grid, Random, Bayesian via Optuna).
* ๐Ÿค– Auto-RAG Tuner for dynamic retrieverโ€“embedding recommendations.
* ๐Ÿงฎ Validation QA generation for corpora without labeled data.
* ๐Ÿ“ฆ Chunking, embeddings, retrievers, rerankers configuration.
* โš™๏ธ Full RAG pipeline control programmatically.

---

## ๐Ÿš€ Quick Start

### Installation

```bash
pip install -r requirements.txt
```

### Running the MCP Server

```bash
python app.py
```

The server will expose MCP-compatible endpoints, allowing clients to:

* Perform optimization experiments.
* Automatically autotune pipelines.
* Generate validation QA sets with LLM.


### Environment Variables

Set API keys for LLMs used in explainability and QA generation:

```bash
export GOOGLE_API_KEY="your_gemini_key"
```

---

## ๐Ÿง  MCP Usage

Ragmint MCP Server provides Python-callable interfaces for programmatic control. You can find an example of MCP usage in the [Ragmint MCP Server Space](https://huggingface.co/spaces/andyolivers/ragmint-mcp-server) on Hugging Face.


---

## ๐Ÿ”ค Supported Embeddings

* `sentence-transformers/all-MiniLM-L6-v2`
* `sentence-transformers/all-mpnet-base-v2`
* `BAAI/bge-base-en-v1.5`
* `intfloat/multilingual-e5-base`

### Configuration Example

```yaml
embedding_model: sentence-transformers/all-MiniLM-L6-v2
```

---

## ๐Ÿ” Supported Retrievers

| Retriever    | Description                                                      |
|--------------|------------------------------------------------------------------|
| FAISS        | Fast vector similarity search and indexing.                      |
| Chroma       | Persistent vector database with embeddings.                      |
| bm25         | Classical lexical search based on term relevance (TF-IDF-style). |
| numpy        | Brute-force similarity search using raw vectors and matrix ops.  |

### Configuration Example

```yaml
retriever: faiss
```

---

## ๐Ÿงฎ Dataset Options

| Mode                 | Example                            | Description                        |
|----------------------|------------------------------------|------------------------------------|
| Default              | validation_set=None                | Uses built-in validation_qa.json.  |
| Custom File          | validation_set="data/my_eval.json" | Your QA dataset.                   |
| Hugging Face Dataset | validation_set="squad"             | Downloads benchmark dataset.       |
| Generate             | validation_set="generate"          | Generates the QA dataset with LLM. |

---

## ๐Ÿงฉ Folder Structure

```
ragmint_mcp_server/
โ”œโ”€โ”€ app.py  # MCP server entrypoint
โ”œโ”€โ”€ models.py
โ””โ”€โ”€ api.py
```
---
## ๐Ÿ”ง MCP Tools (app.py)

The `app.py` file provides the Gradio UI and also registers the functions exposed as **MCP Tools**, enabling external MCP clients (Claude Desktop, Cursor, VS Code MCP extension, etc.) to call Ragmint programmatically.

`app.py` launches the FastAPI backend (`api.py`) in a background thread and exposes the following MCP tools:

| MCP Tool  | Python Function        | Description                                                                        |
|-----------|------------------------|------------------------------------------------------------------------------------|
| upload_docs | upload_docs_tool()     | Uploads `.txt` files or remote URLs into the configured `docs_path`.              |
| upload_urls | upload_urls_tool()     | Downloads remote files from external URLs and stores them inside `docs_path`.     |
| optimize_rag | optimize_rag_tool()    | Runs explicit hyperparameter optimization for a RAG pipeline.                     |
| autotune  | autotune_tool()        | Automatically recommends best chunking + embedding configuration.                 |
| generate_qa | generate_qa_tool()     | Generates synthetic QA validation dataset for evaluation.                         |
| clear_cache | clear_cache_tool()     | Deletes all docs inside `data/docs` to reset the workspace.                       |

---

## ๐ŸŽฌ Demo

YouTube: https://www.youtube.com/watch?v=DKtHBI3jYgQ

---

## ๐Ÿ“ฅ Inputs

The Ragmint MCP Server exposes three main endpoints with the following inputs:


### 1. Upload Documents (`upload_docs`)

Input: `.txt` files or file-like objects to upload to the documents directory (`docs_path`).

<details>
<summary>View Input Model</summary>

| Field | Type | Description | Example |
|--------|-------|-------------|---------|
| files | File[] | Local `.txt` files selected or passed from MCP client | ["sample.txt"] |
| docs_path | str | Directory where files are stored | data/docs |
</details>


### 2. Upload URLs (`upload_urls`)

Input: List of URLs referencing `.txt` files to download and store in `docs_path`.

<details>
<summary>View Input Model</summary>

| Field | Type | Description | Example |
|--------|-------|-------------|---------|
| urls | List[str] | List of URLs pointing to remote documents | ["https://example.com/doc.txt"] |
| docs_path | str | Directory where downloaded files are saved | data/docs |

</details>

### 3. Optimize RAG (`optimize_rag`)

Input: JSON object following the `OptimizeRequest` model.

<details>
<summary>View Input Model</summary>

| Field | Type | Description | Example |
|-------|------|-------------|---------|
| docs_path | str | Folder containing documents | data/docs |
| retriever | List[str] | Retriever type | ["faiss"] |
| embedding_model | List[str] | Embedding model name or path | ["sentence-transformers/all-MiniLM-L6-v2"] |
| strategy | List[str] | RAG strategy | ["fixed"] |
| chunk_sizes | List[int] | Chunk sizes to evaluate | [200] |
| overlaps | List[int] | Overlap values to test | [50] |
| rerankers | List[str] | Rerankers to apply after retrieval | ["mmr"] |
| search_type | str | Parameter search method (grid, random, bayesian) | "grid" |
| trials | int | Number of optimization trials | 2 |
| metric | str | Evaluation metric for optimization | "faithfulness" |
| validation_choice | str | Validation data source (generate, local JSON path, HF dataset ID, etc.) | "generate" |
| llm_model | str | LLM used to generate QA dataset when validation_choice=generate | "gemini-2.5-flash-lite" |

</details>

### 4. Autotune RAG (`autotune`)

Input: JSON object following the `AutotuneRequest` model.

<details>
<summary>View Input Model</summary>

| Field | Type | Description | Example |
|-------|------|-------------|---------|
| docs_path | str | Folder containing documents | data/docs |
| embedding_model | str | Embedding model name or path | "sentence-transformers/all-MiniLM-L6-v2" |
| num_chunk_pairs | int | Number of chunk pairs to analyze for tuning | 2 |
| metric | str | Evaluation metric for optimization | "faithfulness" |
| search_type | str | Search method (grid, random, bayesian) | "grid" |
| trials | int | Number of optimization trials | 2 |
| validation_choice | str | Validation data source (generate, local JSON, HF dataset) | "generate" |
| llm_model | str | LLM used for generating QA dataset | "gemini-2.5-flash-lite" |

</details>

### 5. Generate QA (`generate_qa`)

Input: JSON object following the `QARequest` model.
<details>
<summary>View Input Model</summary>

| Field | Type | Description | Example |
|-------|------|-------------|---------|
| docs_path | str | Folder containing documents for QA generation | data/docs |
| llm_model | str | LLM used for question generation | "gemini-2.5-flash-lite" |
| batch_size | int | Number of documents processed per batch | 5 |
| min_q | int | Minimum number of questions per document | 3 |
| max_q | int | Maximum number of questions per document | 25 |

</details>

### 6. Clear Cache (`clear_cache`)

Deletes all stored documents from `data/docs`.

<details>
<summary>View Input Model</summary>

| Field | Type | Description | Example |
|--------|-------|-------------|---------|
| docs_path | str | Folder to wipe clean | data/docs |

</details>

---

## ๐Ÿ“ค Outputs

The Ragmint MCP Server exposes three main endpoints with the following example outputs:

### 1. Upload Documents Response (`upload_docs`)

<details>
<summary>View Response Example</summary>

```json
{
  "status": "ok",
  "uploaded_files": ["sample.txt"],
  "docs_path": "data/docs"
}
```

</details>

- **status**: `"ok"` โ†’ Indicates that the upload was successful.
- **uploaded_files**: List of file names that were successfully uploaded.
- **docs_path**: The directory where the uploaded documents are stored.

โœ… Confirms your documents are ready for RAG operations.


### 2. Upload URLs Response (`upload_urls`)

<details>
<summary>View Response Example</summary>

```json
{
  "status": "ok",
  "uploaded_files": ["doc.txt"],
  "docs_path": "data/docs"
}
```
</details> 

- **status**: `"ok"` โ†’ Indicates that the upload was successful.
- **uploaded_files**: List of file names that were successfully uploaded.
- **docs_path**: The directory where the uploaded documents are stored.

โœ… Confirms your documents are ready for RAG operations.


### 3. Optimize RAG Response (`optimize_rag`)

<details>
<summary>View Response Example</summary>

```json
{
  "status": "finished",
  "run_id": "opt_1763222218",
  "elapsed_seconds": 0.937,
  "best_config": {
    "retriever": "faiss",
    "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
    "reranker": "mmr",
    "chunk_size": 200,
    "overlap": 50,
    "strategy": "fixed",
    "faithfulness": 0.8659,
    "latency": 0.0333
  },
  "results": [
    {
      "retriever": "faiss",
      "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
      "reranker": "mmr",
      "chunk_size": 200,
      "overlap": 50,
      "strategy": "fixed",
      "faithfulness": 0.8659,
      "latency": 0.0333
    }
  ],
  "corpus_stats": {
    "num_docs": 1,
    "avg_len": 8.0,
    "corpus_size": 61
  }
}
```

</details>

- **status**: `"finished"` โ†’ Optimization process completed.
- **run_id**: Unique identifier for this optimization run.
- **elapsed_seconds**: How long the optimization took.
- **best_config**: Configuration that gave the best performance.
  - **retriever** โ†’ The retrieval algorithm used (faiss).
  - **embedding_model** โ†’ Embedding model applied.
  - **reranker** โ†’ Reranking strategy after retrieval.
  - **chunk_size** โ†’ Size of document chunks used in RAG.
  - **overlap** โ†’ Overlap between consecutive chunks.
  - **strategy** โ†’ RAG retrieval strategy.
  - **faithfulness** โ†’ Evaluation score (higher = better).
  - **latency** โ†’ Time per query in seconds.
- **results**: List of all tested configurations and their scores.
- **corpus_stats**: Statistics about the uploaded documents.
  - **num_docs** โ†’ Number of documents in corpus.
  - **avg_len** โ†’ Average document length.
  - **corpus_size** โ†’ Total size in characters or tokens.


### 4. Autotune RAG Response (`autotune`)

<details>
<summary>View Response Example</summary>

```json
{
  "status": "finished",
  "run_id": "autotune_1763222228",
  "elapsed_seconds": 4.733,
  "recommendation": {
    "retriever": "BM25",
    "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
    "chunk_size": 100,
    "overlap": 30,
    "strategy": "fixed",
    "chunk_candidates": [[100, 30], [110, 30]]
  },
  "chunk_candidates": [[90, 50], [70, 50]],
  "best_config": {
    "retriever": "BM25",
    "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
    "reranker": "mmr",
    "chunk_size": 70,
    "overlap": 50,
    "strategy": "fixed",
    "faithfulness": 1.0,
    "latency": 0.0272
  },
  "results": [
    {
      "retriever": "BM25",
      "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
      "reranker": "mmr",
      "chunk_size": 70,
      "overlap": 50,
      "strategy": "fixed",
      "faithfulness": 1.0,
      "latency": 0.0272
    },
    {
      "retriever": "BM25",
      "embedding_model": "sentence-transformers/all-MiniLM-L6-v2",
      "reranker": "mmr",
      "chunk_size": 90,
      "overlap": 50,
      "strategy": "fixed",
      "faithfulness": 1.0,
      "latency": 0.0186
    }
  ],
  "corpus_stats": {
    "num_docs": 1,
    "avg_len": 8.0,
    "corpus_size": 61
  }
}
```

</details>

- **recommendation**: The tuned configuration suggested by the autotuner.
- **chunk_candidates**: List of possible chunk_size/overlap pairs analyzed.
- **best_config**: Best-performing configuration with metrics.
- **results**: All tested configurations and their performance.
- **corpus_stats**: Same as in optimize response.
- **status, run_id, elapsed_seconds**: Same meaning as Optimize endpoint.

๐Ÿง  **Difference from Optimize**: Autotune automatically selects the best hyperparameters, rather than testing all user-specified combinations.


### 5. Generate QA Response (`generate_qa`)

<details>
<summary>View Response Example</summary>

```json
{
  "status": "finished",
  "output_path": "data/docs/validation_qa.json",
  "preview_count": 3,
  "sample": [
    {
      "query": "What capability does Artificial Intelligence provide to machines?",
      "expected_answer": "Artificial Intelligence enables machines to learn from data."
    },
    {
      "query": "What is the primary source of learning for machines with Artificial Intelligence?",
      "expected_answer": "Machines with Artificial Intelligence learn from data."
    },
    {
      "query": "How does Artificial Intelligence facilitate machine learning?",
      "expected_answer": "Artificial Intelligence enables machines to learn from data."
    }
  ]
}
```

</details>

- **output_path**: Where the generated QA JSON file is saved.
- **preview_count**: Number of QA pairs included in the response preview.
- **sample**: Example QA pairs:
  - **query** โ†’ The question generated from the document.
  - **expected_answer** โ†’ The reference answer corresponding to that question.
- **status**: `"finished"` โ†’ QA generation completed successfully.


### 6. Clear Cache Response (`clear_cache`)

<details>
<summary>View Response Example</summary>

```json
{
  "status": "ok",
  "deleted_files": 7,
  "docs_path": "data/docs"
}
```
</details>

- **deleted_files**: Number of documents removed.
- **status**: "ok" indicates successful workspace reset.

---

## ๐Ÿ“˜ License

This project is licensed under the Apache License 2.0. See the [LICENSE](LICENSE) file for details.

---

<p align="center">
  <sub>Built with โค๏ธ by <a href="https://andyolivers.com">Andrรฉ Oliveira</a> | Apache 2.0 License</sub>
</p>