File size: 42,199 Bytes
e422038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce43bd
 
e422038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2d7928
 
e422038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2d7928
 
e422038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2d7928
e422038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2d7928
e422038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2d7928
e422038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2d7928
e422038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2d7928
e422038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
"""
LangGraph Agent for Vibe Reader
Implements the agentic workflow for book recommendation based on visual vibes
"""

import os
import json
from typing import TypedDict, List, Dict, Any, Literal, Annotated
from operator import add
from openai import OpenAI
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langgraph.graph import StateGraph, END
from langgraph.types import interrupt
from dotenv import load_dotenv


# ============================================================================
# CONFIGURATION
# ============================================================================

NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY")
NEBIUS_BASE_URL = "https://api.tokenfactory.nebius.com/v1/"
VLM_MODEL = "google/gemma-3-27b-it-fast"
REASONING_MODEL = "Qwen/Qwen3-30B-A3B-Thinking-2507"
FAST_MODEL = "moonshotai/Kimi-K2-Instruct"  # Non-thinking model for simple tasks

MODAL_VECTOR_STORE_URL = os.getenv("MODAL_VECTOR_STORE_URL", "https://placeholder-modal-url.modal.run/search")
GOOGLE_BOOKS_MCP_URL = os.getenv("GOOGLE_BOOKS_MCP_URL", "https://mcp-1st-birthday-google-books-mcp.hf.space")

NUM_BOOKS_TO_RETRIEVE = 7  # Target number of books with valid descriptions
NUM_BOOKS_TO_FETCH = 13    # Fetch extra to account for books without descriptions
NUM_FINAL_BOOKS = 3

# ============================================================================
# STATE DEFINITION
# ============================================================================

class AgentState(TypedDict):
    """State maintained throughout the agent workflow"""
    # User inputs
    images: List[str]  # List of image URLs or base64 encoded images

    # Conversation history (no reducer - we manage the list directly)
    messages: List[Dict[str, str]]

    # Vibe components (from JSON extraction)
    aesthetic_genre_keywords: List[str]  # Genre/aesthetic keywords
    mood_atmosphere: List[str]  # Mood descriptors
    core_themes: List[str]  # Core themes
    tropes: List[str]  # Story tropes
    feels_like: str  # User-facing "feels like" description (what gets refined)
    vibe_refinement_count: int  # Number of refinement iterations

    # Book retrieval
    retrieved_books: List[Dict[str, str]]  # List of {title, author} dicts
    books_with_metadata: List[Dict[str, Any]]  # Enriched with Google Books data

    # Narrowing process
    q1_question: str  # First narrowing question (stored for resume)
    q2_question: str  # Second narrowing question (stored for resume)
    user_preferences: Dict[str, Any]  # Accumulated user preferences from Q&A (question + answer pairs)
    final_books: List[Dict[str, Any]]  # Final 3 books

    # Final outputs
    soundtrack_url: str  # ElevenLabs generated soundtrack

    # Debug/reasoning (no reducer - we manage the list directly)
    reasoning: List[str]


# ============================================================================
# HELPER FUNCTIONS
# ============================================================================

def create_openai_client() -> OpenAI:
    """Create OpenAI client configured for Nebius"""
    return OpenAI(api_key=NEBIUS_API_KEY, base_url=NEBIUS_BASE_URL)


def call_llm(messages: List[Dict[str, Any]], temperature: float = 0.7, model: str = REASONING_MODEL, include_reasoning: bool = False, max_tokens: int = 2500):
    """Generic LLM call for reasoning and decision-making using Nebius API

    Args:
        messages: Conversation messages
        temperature: Sampling temperature
        model: Model to use
        include_reasoning: If True, returns tuple of (content, reasoning_text)
        max_tokens: Maximum tokens for response (default 1000)

    Returns:
        str or tuple: Response content, or (content, reasoning) if include_reasoning=True
    """
    client = create_openai_client()  # Uses Nebius
    response = client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=temperature,
        max_tokens=max_tokens
    )

    message = response.choices[0].message
    content = message.content or ""

    if include_reasoning:
        # Nebius API returns reasoning in a separate field for Thinking models
        reasoning = getattr(message, 'reasoning_content', None) or ""
        
        if reasoning:
            # If content is empty, log a warning but don't try to extract from reasoning
            # (the last line of reasoning is usually garbage, not the answer)
            if not content.strip():
                print(f"[DEBUG AGENT] Warning: LLM returned empty content with reasoning. This may indicate an issue.")
            return content, reasoning
        
        # Fallback: try parsing <think>...</think> tags from content
        import re
        think_match = re.match(r'<think>(.*?)</think>(.*)', content, re.DOTALL)
        if think_match:
            reasoning = think_match.group(1).strip()
            final_content = think_match.group(2).strip()
            return final_content, reasoning
        
        # No reasoning found
        return content, "No reasoning trace found"

    return content


# ============================================================================
# NODES
# ============================================================================

def generate_initial_vibe(state: AgentState) -> AgentState:
    """Node: Generate initial vibe description from uploaded images using VLM"""
    from prompts import VIBE_EXTRACTION
    from utils import parse_json_response, extract_vibe_components

    client = create_openai_client()

    # Construct message with images
    content = [{"type": "text", "text": "Analyze these images and extract the vibe:"}]
    for img in state["images"]:
        # Convert local file paths to base64 data URLs if needed
        if img.startswith(('http://', 'https://', 'data:')):
            # Already a valid URL
            image_url = img
        else:
            # Local file path - convert to base64
            import base64
            from pathlib import Path

            img_path = Path(img)
            if img_path.exists():
                with open(img_path, 'rb') as f:
                    img_data = base64.b64encode(f.read()).decode('utf-8')
                # Determine MIME type from extension
                ext = img_path.suffix.lower()
                mime_types = {'.jpg': 'jpeg', '.jpeg': 'jpeg', '.png': 'png', '.gif': 'gif', '.webp': 'webp'}
                mime = mime_types.get(ext, 'jpeg')
                image_url = f"data:image/{mime};base64,{img_data}"
            else:
                state["reasoning"].append(f"⚠️ Warning: Image file not found: {img}")
                continue

        content.append({
            "type": "image_url",
            "image_url": {"url": image_url}
        })

    response = client.chat.completions.create(
        model=VLM_MODEL,
        messages=[
            {"role": "system", "content": VIBE_EXTRACTION},
            {"role": "user", "content": content}
        ],
        temperature=0.7,
        max_tokens=2000
    )

    vibe_json_str = response.choices[0].message.content

    # Parse JSON response
    vibe_json = parse_json_response(vibe_json_str)
    if not vibe_json:
        state["reasoning"].append(f"❌ Failed to parse vibe JSON. Raw response: {vibe_json_str[:200]}")
        # Fallback to simple extraction
        state["feels_like"] = vibe_json_str
        state["aesthetic_genre_keywords"] = []
        state["mood_atmosphere"] = []
        state["core_themes"] = []
        state["tropes"] = []
    else:
        # Extract components
        components = extract_vibe_components(vibe_json)
        state["aesthetic_genre_keywords"] = components["aesthetic_genre_keywords"]
        state["mood_atmosphere"] = components["mood_atmosphere"]
        state["core_themes"] = components["core_themes"]
        state["tropes"] = components["tropes"]
        state["feels_like"] = components["feels_like"]

        state["reasoning"].append(f"βœ… Extracted vibe components:\n"
                                 f"  - Aesthetics: {', '.join(state['aesthetic_genre_keywords'])}\n"
                                 f"  - Mood: {', '.join(state['mood_atmosphere'])}\n"
                                 f"  - Themes: {', '.join(state['core_themes'])}\n"
                                 f"  - Tropes: {', '.join(state['tropes'])}")

    state["vibe_refinement_count"] = 0

    # Only show feels_like to user
    assistant_message = f"Here's the vibe I'm getting from your images:\n\n{state['feels_like']}\n\nDoes this capture what you're looking for, or would you like me to adjust it?"
    state["messages"].append({
        "role": "assistant",
        "content": assistant_message
    })

    # Wait for user feedback; when resumed, user_response will contain their reply
    user_response = interrupt(assistant_message)
    if user_response:
        state["messages"].append({"role": "user", "content": user_response})

    return state


def refine_vibe(state: AgentState) -> AgentState:
    """Node: Refine vibe based on user feedback - only refines feels_like portion"""
    from prompts import VIBE_REFINEMENT
    from utils import strip_thinking_tags

    print("[DEBUG AGENT] refine_vibe node started")
    
    # Get the latest user message (feedback)
    user_messages = [m for m in state["messages"] if m.get("role") == "user"]
    print(f"[DEBUG AGENT] Found {len(user_messages)} user messages")
    if not user_messages:
        state["reasoning"].append("⚠️ No user feedback found for refinement; skipping refine_vibe step")
        return state

    user_feedback = user_messages[-1]["content"]
    print(f"[DEBUG AGENT] user_feedback: {user_feedback[:50] if user_feedback else 'None'}...")

    # Use LLM to refine only the feels_like description
    # Keep other vibe components (aesthetics, themes, tropes) unchanged
    messages = [
        {"role": "system", "content": VIBE_REFINEMENT},
        {"role": "user", "content": f"Current 'feels like' description: {state['feels_like']}\n\nUser feedback: {user_feedback}\n\nProvide the refined 'feels like' description (4-5 sentences):"}
    ]

    print(f"[DEBUG AGENT] Calling LLM for refinement...")
    refined_feels_like, reasoning = call_llm(messages, temperature=0.7, include_reasoning=True)
    print(f"[DEBUG AGENT] LLM returned content: {refined_feels_like[:200] if refined_feels_like else 'None'}...")
    print(f"[DEBUG AGENT] LLM reasoning: {reasoning[:200] if reasoning else 'None'}...")

    # Ensure no thinking tags leak into the feels_like
    refined_feels_like = strip_thinking_tags(refined_feels_like)

    # Update only the feels_like portion
    state["feels_like"] = refined_feels_like
    state["vibe_refinement_count"] += 1

    assistant_message = f"I've refined the vibe:\n\n{refined_feels_like}\n\nIs this better, or would you like further adjustments?"
    print(f"[DEBUG AGENT] Adding assistant message to state, current msg count: {len(state['messages'])}")
    state["messages"].append({
        "role": "assistant",
        "content": assistant_message
    })
    state["reasoning"].append(f"🧠 REASONING (Vibe Refinement #{state['vibe_refinement_count']}):\n{reasoning}\n")
    print(f"[DEBUG AGENT] After append, msg count: {len(state['messages'])}")

    # Wait for user feedback on the refined vibe
    print(f"[DEBUG AGENT] About to call interrupt()")
    user_response = interrupt(assistant_message)
    print(f"[DEBUG AGENT] interrupt() returned: {user_response}")
    if user_response:
        state["messages"].append({"role": "user", "content": user_response})

    return state


def check_vibe_satisfaction(state: AgentState) -> Literal["refine", "retrieve"]:
    """Conditional edge: Check if user is satisfied with vibe description"""
    from prompts import VIBE_SATISFACTION_CHECKER

    # Get the last user message
    user_messages = [m for m in state["messages"] if m.get("role") == "user"]
    if not user_messages:
        # No explicit feedback; default to moving forward
        return "retrieve"

    raw_content = user_messages[-1]["content"]

    # Content may occasionally be a non-string (e.g., list from upstream tools);
    # normalize to text before passing into the LLM.
    if isinstance(raw_content, str):
        last_user_msg = raw_content
    elif isinstance(raw_content, list):
        # Join any text-like chunks into a single string representation
        last_user_msg = " ".join(str(x) for x in raw_content)
    else:
        last_user_msg = str(raw_content)

    # Use LLM to determine satisfaction
    messages = [
        {"role": "system", "content": VIBE_SATISFACTION_CHECKER},
        {"role": "user", "content": f"User's response: {last_user_msg}"}
    ]

    decision, reasoning = call_llm(messages, temperature=0.0, include_reasoning=True)
    decision = decision.strip().lower() if decision else ""
    
    print(f"[DEBUG] check_vibe_satisfaction - user said: '{last_user_msg}'")
    print(f"[DEBUG] check_vibe_satisfaction - LLM decision: '{decision}'")

    state["reasoning"].append(f"🧠 REASONING (Satisfaction Check):\n{reasoning}\n\nβ†’ Decision: {decision}")

    if "satisfied" in decision and "not_satisfied" not in decision:
        print(f"[DEBUG] check_vibe_satisfaction -> RETRIEVE (user satisfied)")
        return "retrieve"
    else:
        print(f"[DEBUG] check_vibe_satisfaction -> REFINE (user not satisfied)")
        return "refine"


def retrieve_books(state: AgentState) -> AgentState:
    """Node: Retrieve books from Modal vector store"""
    import requests

    # Construct full vibe query from all components
    vibe_query = f"{state['feels_like']}\n\nGenres/Aesthetics: {', '.join(state['aesthetic_genre_keywords'])}\nMood: {', '.join(state['mood_atmosphere'])}\nThemes: {', '.join(state['core_themes'])}\nTropes: {', '.join(state['tropes'])}"

    try:
        # Call Modal vector store endpoint
        print(f"DEBUG: Calling Modal URL: {MODAL_VECTOR_STORE_URL}")
        state["reasoning"].append(f"πŸ“š Calling Modal vector store with full vibe profile")
        state["reasoning"].append(f"URL: {MODAL_VECTOR_STORE_URL}")

        response = requests.post(
            MODAL_VECTOR_STORE_URL,
            json={
                "query": vibe_query,
                "top_k": NUM_BOOKS_TO_RETRIEVE,
                "min_books_per_vibe": 1
            },
            timeout=180  # Long timeout for cold start
        )
        
        print(f"DEBUG: Response status: {response.status_code}")
        print(f"DEBUG: Response text: {response.text[:500] if response.text else 'empty'}")

        if response.status_code == 200:
            data = response.json()

            # Extract books from search results with diversity across vibes
            # Modal returns: {"results": [{"books": [...], "vibe_data": {...}, "score": ...}], ...}
            # Strategy: Take up to MAX_BOOKS_PER_VIBE from each vibe to ensure diversity
            MAX_BOOKS_PER_VIBE = 5
            
            books = []
            seen = set()  # Track seen books for deduplication
            
            for result in data.get("results", []):
                vibe_score = result.get("score", 0)
                vibe_books = result.get("books", [])
                books_from_this_vibe = 0
                
                for book in vibe_books:
                    if books_from_this_vibe >= MAX_BOOKS_PER_VIBE:
                        break
                    
                    title = book.get("title", "")
                    author = book.get("author", "")
                    key = (title.lower(), author.lower())
                    
                    # Skip duplicates
                    if key in seen:
                        continue
                    
                    seen.add(key)
                    books.append({
                        "title": title,
                        "author": author,
                        "vibe_score": vibe_score  # Track which vibe it came from
                    })
                    books_from_this_vibe += 1

            # Fetch extra books to account for filtering (books without descriptions)
            books = books[:NUM_BOOKS_TO_FETCH]

            state["reasoning"].append(f"Retrieved {len(books)} books from {len(data.get('results', []))} vibes (max {MAX_BOOKS_PER_VIBE} per vibe)")

        else:
            raise Exception(f"HTTP {response.status_code}: {response.text[:200]}")

    except Exception as e:
        # Fallback to mock data for development
        print(f"DEBUG ERROR: Vector store call failed: {e}")
        import traceback
        traceback.print_exc()
        state["reasoning"].append(f"Vector store call failed: {e}. Using mock data.")
        books = [
            {"title": "The Night Circus", "author": "Erin Morgenstern"},
            {"title": "The Ocean at the End of the Lane", "author": "Neil Gaiman"},
            {"title": "The Starless Sea", "author": "Erin Morgenstern"},
            {"title": "Piranesi", "author": "Susanna Clarke"},
            {"title": "The House in the Cerulean Sea", "author": "TJ Klune"},
            {"title": "Howl's Moving Castle", "author": "Diana Wynne Jones"},
            {"title": "Circe", "author": "Madeline Miller"},
            {"title": "The Invisible Life of Addie LaRue", "author": "V.E. Schwab"},
            {"title": "Mexican Gothic", "author": "Silvia Moreno-Garcia"},
            {"title": "The Ten Thousand Doors of January", "author": "Alix E. Harrow"},
            {"title": "The Goblin Emperor", "author": "Katherine Addison"},
            {"title": "The Priory of the Orange Tree", "author": "Samantha Shannon"},
            {"title": "Uprooted", "author": "Naomi Novik"},
            {"title": "The Bear and the Nightingale", "author": "Katherine Arden"},
            {"title": "The City of Brass", "author": "S.A. Chakraborty"}
        ]

    state["retrieved_books"] = books
    state["reasoning"].append(f"Total books in state: {len(books)}")

    return state


def call_google_books_mcp(title: str, author: str = "") -> Dict[str, Any]:
    """
    Call the Google Books MCP server via Gradio MCP endpoint.
    
    Args:
        title: Book title
        author: Book author (optional)
    
    Returns:
        Book metadata dict or None if not found
    """
    import requests
    
    try:
        # Gradio MCP endpoint (Streamable HTTP transport)
        mcp_url = f"{GOOGLE_BOOKS_MCP_URL}/gradio_api/mcp/"
        
        # MCP uses JSON-RPC style calls
        payload = {
            "jsonrpc": "2.0",
            "method": "tools/call",
            "params": {
                "name": "google_books_mcp_search_book_by_title_author",
                "arguments": {
                    "title": title,
                    "author": author
                }
            },
            "id": 1
        }
        
        response = requests.post(
            mcp_url,
            json=payload,
            headers={
                "Content-Type": "application/json",
                "Accept": "application/json, text/event-stream"
            },
            timeout=30
        )
        
        if response.status_code != 200:
            print(f"[DEBUG] Google Books MCP failed: {response.status_code} - {response.text[:200]}")
            return None
        
        # Parse SSE response
        for line in response.text.split('\n'):
            if line.startswith('data: '):
                try:
                    data = json.loads(line[6:])
                    if "result" in data:
                        result = data["result"]
                        if isinstance(result, dict):
                            # Check if it's a direct book response
                            if "success" in result and "book" in result:
                                if result.get("success") and result.get("book"):
                                    return result["book"]
                            # Check if it's a content array response
                            elif "content" in result:
                                for content_item in result["content"]:
                                    if content_item.get("type") == "text":
                                        text_content = content_item.get("text", "")
                                        if text_content.strip():
                                            try:
                                                book_data = json.loads(text_content)
                                                if book_data.get("success") and book_data.get("found"):
                                                    return book_data.get("book")
                                            except json.JSONDecodeError:
                                                continue
                        return result
                except json.JSONDecodeError:
                    continue
        
        return None
        
    except Exception as e:
        print(f"[DEBUG] Google Books MCP error: {e}")
        return None




def fetch_book_metadata(state: AgentState) -> AgentState:
    """Node: Fetch metadata for retrieved books via Google Books API"""
    print(f"[DEBUG AGENT] fetch_book_metadata node started with {len(state.get('retrieved_books', []))} books")

    enriched_books = []
    skipped_books = []
    state["reasoning"].append(f"πŸ“– Fetching metadata from Google Books (need {NUM_BOOKS_TO_RETRIEVE} with descriptions)...")

    for book in state["retrieved_books"]:
        # Stop once we have enough books with valid descriptions
        if len(enriched_books) >= NUM_BOOKS_TO_RETRIEVE:
            print(f"[DEBUG] Reached target of {NUM_BOOKS_TO_RETRIEVE} books, stopping")
            break
            
        try:
            # Use Google Books MCP server
            metadata = call_google_books_mcp(book['title'], book['author'])

            if metadata and metadata.get("title"):
                description = metadata.get("description", "")
                
                # FILTER: Skip books without meaningful descriptions
                if not description or len(description.strip()) < 50:
                    skipped_books.append(book['title'])
                    print(f"[DEBUG] Skipping '{book['title']}' - no/short description ({len(description.strip()) if description else 0} chars)")
                    continue
                
                # Format authors as string
                authors = metadata.get("authors", [])
                author_str = ", ".join(authors) if isinstance(authors, list) else authors or book["author"]
                
                enriched_books.append({
                    "title": metadata.get("title", book["title"]),
                    "author": author_str,
                    "description": description,
                    "cover_url": metadata.get("thumbnail"),
                    "isbn": metadata.get("isbn"),
                    "published_year": metadata.get("published_date", "")[:4] if metadata.get("published_date") else None,
                    "page_count": metadata.get("page_count"),
                    "categories": metadata.get("categories", []),
                    "preview_link": metadata.get("preview_link"),
                    "info_link": metadata.get("info_link")
                })
                print(f"[DEBUG] Found metadata for: {book['title']} ({len(description)} chars) [{len(enriched_books)}/{NUM_BOOKS_TO_RETRIEVE}]")
            else:
                # No results found - skip
                skipped_books.append(book['title'])
                print(f"[DEBUG] Skipping '{book['title']}' - no Google Books results")

        except Exception as e:
            # On any error, skip the book
            skipped_books.append(book['title'])
            state["reasoning"].append(f"Error fetching metadata for '{book['title']}': {str(e)}")

    state["books_with_metadata"] = enriched_books
    
    if skipped_books:
        state["reasoning"].append(f"⚠️ Skipped {len(skipped_books)} books without descriptions")
    state["reasoning"].append(f"βœ… Found {len(enriched_books)}/{NUM_BOOKS_TO_RETRIEVE} books with full metadata")

    return state


def _generate_narrowing_question(state: AgentState, question_num: int) -> tuple:
    """Helper: Generate a narrowing question"""
    from prompts import NARROWING_QUESTION_GENERATOR
    
    books_summary_parts = []
    for i, b in enumerate(state["books_with_metadata"], 1):
        desc = b.get('description', 'No description')
        cats = ', '.join(b.get('categories', [])) if b.get('categories') else 'Uncategorized'
        books_summary_parts.append(f"Book {i}: {b['title']} by {b['author']}\n  Categories: {cats}\n  Description: {desc}")
    books_summary = "\n\n".join(books_summary_parts)

    vibe_context = f"Feels like: {state['feels_like']}\nAesthetics: {', '.join(state['aesthetic_genre_keywords'])}\nMood: {', '.join(state['mood_atmosphere'])}\nThemes: {', '.join(state['core_themes'])}"

    is_last = question_num >= 2
    question_context = f"This is question {question_num} of 2." + (" THIS IS THE LAST QUESTION - make it count!" if is_last else "")

    user_prompt = f"Books to narrow down:\n{books_summary}\n\nVibe:\n{vibe_context}\n\nPrevious preferences: {json.dumps(state.get('user_preferences', {}), indent=2)}\n\n{question_context}\n\nGenerate an either/or question:"
    
    messages = [
        {"role": "system", "content": NARROWING_QUESTION_GENERATOR},
        {"role": "user", "content": user_prompt}
    ]

    return call_llm(messages, temperature=0.8, model=FAST_MODEL, include_reasoning=True)


def generate_question_1(state: AgentState) -> AgentState:
    """Node: Generate Q1 and add to messages"""
    print(f"[DEBUG AGENT] generate_question_1")
    
    question, reasoning = _generate_narrowing_question(state, 1)
    
    state["narrowing_questions_asked"] = 1
    state["q1_question"] = question
    state["reasoning"].append(f"🧠 REASONING (Narrowing Question #1):\n{reasoning}\n\nβ†’ Question: {question}")

    assistant_message = f"To help me find the perfect match:\n\n{question}"
    print(f"[DEBUG AGENT] Q1: {question[:60]}...")
    
    state["messages"].append({"role": "assistant", "content": assistant_message})
    return state


def wait_for_answer_1(state: AgentState) -> AgentState:
    """Node: Wait for user's answer to Q1"""
    print(f"[DEBUG AGENT] wait_for_answer_1")
    
    user_answer = interrupt("Waiting for Q1 answer")
    if user_answer:
        state["messages"].append({"role": "user", "content": user_answer})
        state["user_preferences"]["q1"] = {
            "question": state.get("q1_question", ""),
            "answer": user_answer
        }
        print(f"[DEBUG AGENT] Q1 answered: {user_answer}")
    return state


def generate_question_2(state: AgentState) -> AgentState:
    """Node: Generate Q2 and add to messages"""
    print(f"[DEBUG AGENT] generate_question_2")
    
    question, reasoning = _generate_narrowing_question(state, 2)
    
    state["narrowing_questions_asked"] = 2
    state["q2_question"] = question
    state["reasoning"].append(f"🧠 REASONING (Narrowing Question #2):\n{reasoning}\n\nβ†’ Question: {question}")

    assistant_message = f"To help me find the perfect match:\n\n{question}"
    print(f"[DEBUG AGENT] Q2: {question[:60]}...")
    
    state["messages"].append({"role": "assistant", "content": assistant_message})
    return state


def wait_for_answer_2(state: AgentState) -> AgentState:
    """Node: Wait for user's answer to Q2"""
    print(f"[DEBUG AGENT] wait_for_answer_2")
    
    user_answer = interrupt("Waiting for Q2 answer")
    if user_answer:
        state["messages"].append({"role": "user", "content": user_answer})
        state["user_preferences"]["q2"] = {
            "question": state.get("q2_question", ""),
            "answer": user_answer
        }
        print(f"[DEBUG AGENT] Q2 answered: {user_answer}")
    return state


def check_narrowing_complete(state: AgentState) -> Literal["ask_more", "finalize"]:
    """Conditional edge: Check if we've asked all 2 narrowing questions"""
    questions_asked = state.get("narrowing_questions_asked", 0)
    if questions_asked >= 2:
        return "finalize"
    return "ask_more"




def finalize_books(state: AgentState) -> AgentState:
    """Node: Use reasoning to select final 3 books based on vibe and preferences"""
    print(f"[DEBUG AGENT] finalize_books node started")
    print(f"[DEBUG AGENT] books_with_metadata count: {len(state.get('books_with_metadata', []))}")
    from prompts import get_book_finalizer_prompt

    # Build detailed book summary with full descriptions - no truncation
    books_summary_parts = []
    for i, b in enumerate(state["books_with_metadata"]):
        desc = b.get('description', 'No description available')
        cats = ', '.join(b.get('categories', [])) if b.get('categories') else 'Uncategorized'
        books_summary_parts.append(f"{i+1}. {b['title']} by {b['author']}\n   Categories: {cats}\n   Description: {desc}")
    books_summary = "\n\n".join(books_summary_parts)
    
    prefs_summary = json.dumps(state.get("user_preferences", {}), indent=2)
    vibe_context = f"Feels like: {state['feels_like']}\nAesthetics: {', '.join(state['aesthetic_genre_keywords'])}\nMood: {', '.join(state['mood_atmosphere'])}\nThemes: {', '.join(state['core_themes'])}\nTropes: {', '.join(state['tropes'])}"

    user_prompt = f"Vibe:\n{vibe_context}\n\nCandidate Books:\n{books_summary}\n\nUser Preferences (from Q&A):\n{prefs_summary}\n\nSelect the {NUM_FINAL_BOOKS} best matches (return only JSON array):"
    
    messages = [
        {"role": "system", "content": get_book_finalizer_prompt(NUM_FINAL_BOOKS)},
        {"role": "user", "content": user_prompt}
    ]

    print(f"[DEBUG AGENT] finalize_books user_prompt:\n{user_prompt}")

    # Use reasoning model for book selection - this is a complex decision
    # Increase max_tokens since we're sending full book descriptions
    selection_response, reasoning = call_llm(messages, temperature=0.3, model=REASONING_MODEL, include_reasoning=True, max_tokens=5000)
    
    # Log reasoning even if empty
    state["reasoning"].append(f"🧠 REASONING (Book Selection):\n{reasoning or 'No reasoning provided'}")

    # Parse the JSON response - check both content and reasoning for the array
    try:
        import re
        # First try to find JSON array in the response content
        json_match = re.search(r'\[([\d,\s]+)\]', selection_response)
        
        # If not found in content, try to find it in reasoning (some models put answer there)
        if not json_match and reasoning:
            json_match = re.search(r'\[([\d,\s]+)\]', reasoning)
            if json_match:
                print(f"[DEBUG AGENT] Found JSON in reasoning instead of content")
        
        if json_match:
            indices = json.loads(json_match.group(0))
            selected_books = [state["books_with_metadata"][i-1] for i in indices if 0 < i <= len(state["books_with_metadata"])][:NUM_FINAL_BOOKS]
        else:
            # Fallback to first 3 books
            print(f"[DEBUG AGENT] No JSON array found, using first 3 books")
            selected_books = state["books_with_metadata"][:NUM_FINAL_BOOKS]
    except Exception as e:
        state["reasoning"].append(f"❌ Failed to parse book selection: {e}. Using first 3 books.")
        selected_books = state["books_with_metadata"][:NUM_FINAL_BOOKS]

    state["final_books"] = selected_books
    state["reasoning"].append(f"🧠 REASONING (Book Selection):\n{reasoning}\n\nβ†’ Selected: {[b['title'] for b in selected_books]}")

    return state


def generate_soundtrack(state: AgentState) -> AgentState:
    """Node: Generate ambient soundtrack using ElevenLabs Music API"""
    print(f"[DEBUG AGENT] generate_soundtrack node started")
    
    import requests
    import tempfile

    ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
    print(f"[DEBUG AGENT] ELEVENLABS_API_KEY present: {bool(ELEVENLABS_API_KEY)}")
    
    if not ELEVENLABS_API_KEY:
        print(f"[DEBUG AGENT] No ELEVENLABS_API_KEY - skipping")
        state["reasoning"].append("⚠️ ELEVENLABS_API_KEY not set - skipping soundtrack generation")
        state["soundtrack_url"] = ""
        return state

    try:
        # Build vibe context for music prompt generation
        vibe_context = {
            "feels_like": state["feels_like"],
            "mood_atmosphere": state["mood_atmosphere"],
            "aesthetic_genre_keywords": state["aesthetic_genre_keywords"],
            "core_themes": state["core_themes"],
            "tropes": state["tropes"]
        }
        print(f"[DEBUG AGENT] vibe_context built: {list(vibe_context.keys())}")

        # Use LLM to generate music prompt from vibe context
        from prompts import MUSIC_PROMPT_GENERATION
        
        messages = [
            {"role": "system", "content": MUSIC_PROMPT_GENERATION},
            {"role": "user", "content": f"Generate a music prompt based on this vibe:\n{json.dumps(vibe_context, indent=2)}"}
        ]
        
        print(f"[DEBUG AGENT] Calling LLM for music prompt...")
        music_prompt, reasoning = call_llm(messages, temperature=0.7, model=FAST_MODEL, include_reasoning=True)
        print(f"[DEBUG AGENT] Music prompt generated: {music_prompt[:100] if music_prompt else 'None'}...")
        state["reasoning"].append(f"🎡 Music prompt: {music_prompt}")
        
        # Call ElevenLabs Music API directly
        print(f"[DEBUG AGENT] Calling ElevenLabs Music API...")
        state["reasoning"].append(f"🎡 Calling ElevenLabs Music API...")
        
        response = requests.post(
            "https://api.elevenlabs.io/v1/music",
            headers={
                "xi-api-key": ELEVENLABS_API_KEY,
                "Content-Type": "application/json"
            },
            json={
                "prompt": music_prompt,
                "music_length_ms": 90000,  # 1:30 minute
                "force_instrumental": True  # No vocals, just ambient music
            },
            timeout=120  # Music generation can take a while
        )
        
        print(f"[DEBUG AGENT] ElevenLabs response status: {response.status_code}")
        
        if response.status_code == 200:
            print(f"[DEBUG AGENT] Success! Response size: {len(response.content)} bytes")
            # Save the audio data to a temp file
            temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
            temp_file.write(response.content)
            temp_file.close()
            print(f"[DEBUG AGENT] Saved to temp file: {temp_file.name}")

            state["soundtrack_url"] = temp_file.name
            state["reasoning"].append(f"βœ… Generated soundtrack successfully ({len(response.content)} bytes)")
        else:
            print(f"[DEBUG AGENT] ElevenLabs API error: {response.status_code} - {response.text[:500]}")
            state["reasoning"].append(f"❌ ElevenLabs API error: {response.status_code} - {response.text[:200]}")
            state["soundtrack_url"] = ""

    except Exception as e:
        import traceback
        print(f"[DEBUG AGENT] Exception in generate_soundtrack: {e}")
        traceback.print_exc()
        state["reasoning"].append(f"❌ Failed to generate soundtrack: {e}")
        state["soundtrack_url"] = ""

    print(f"[DEBUG AGENT] generate_soundtrack finished, soundtrack_url: {state.get('soundtrack_url', 'not set')}")
    return state


def present_final_results(state: AgentState) -> AgentState:
    """Node: Format and present final results to user"""

    # Format books for display
    books_text = "Here are your personalized book recommendations:\n\n"
    for i, book in enumerate(state["final_books"], 1):
        books_text += f"{i}. **{book['title']}** by {book['author']}\n"

    state["messages"].append({
        "role": "assistant",
        "content": books_text + f"\n\nI'm also generating a soundtrack that matches your vibe! Scroll down for all the goodies ⬇️"
    })

    state["reasoning"].append("Presented final results to user")

    return state


# ============================================================================
# GRAPH CONSTRUCTION
# ============================================================================

def create_agent_graph():
    """Create and compile the LangGraph workflow with interrupts for user input"""
    from langgraph.checkpoint.memory import MemorySaver

    # Initialize graph
    workflow = StateGraph(AgentState)

    # Add nodes
    workflow.add_node("generate_initial_vibe", generate_initial_vibe)
    workflow.add_node("refine_vibe", refine_vibe)
    workflow.add_node("retrieve_books", retrieve_books)
    workflow.add_node("fetch_metadata", fetch_book_metadata)
    workflow.add_node("generate_q1", generate_question_1)
    workflow.add_node("wait_a1", wait_for_answer_1)
    workflow.add_node("generate_q2", generate_question_2)
    workflow.add_node("wait_a2", wait_for_answer_2)
    workflow.add_node("finalize_books", finalize_books)
    workflow.add_node("generate_soundtrack", generate_soundtrack)
    workflow.add_node("present_results", present_final_results)

    # Set entry point
    workflow.set_entry_point("generate_initial_vibe")

    # After initial vibe, check if user is satisfied or wants refinement
    workflow.add_conditional_edges(
        "generate_initial_vibe",
        check_vibe_satisfaction,
        {
            "refine": "refine_vibe",
            "retrieve": "retrieve_books"
        }
    )

    # After refinement, check again if user is satisfied
    workflow.add_conditional_edges(
        "refine_vibe",
        check_vibe_satisfaction,
        {
            "refine": "refine_vibe",
            "retrieve": "retrieve_books"
        }
    )

    # Sequential: retrieve -> fetch -> generate Q1 -> wait A1 -> generate Q2 -> wait A2 -> finalize
    workflow.add_edge("retrieve_books", "fetch_metadata")
    workflow.add_edge("fetch_metadata", "generate_q1")
    workflow.add_edge("generate_q1", "wait_a1")
    workflow.add_edge("wait_a1", "generate_q2")
    workflow.add_edge("generate_q2", "wait_a2")
    workflow.add_edge("wait_a2", "finalize_books")

    # Sequential: finalize -> soundtrack -> present
    workflow.add_edge("finalize_books", "generate_soundtrack")
    workflow.add_edge("generate_soundtrack", "present_results")
    workflow.add_edge("present_results", END)

    # Compile with checkpointer for state persistence
    memory = MemorySaver()
    return workflow.compile(checkpointer=memory)


# ============================================================================
# MAIN INTERFACE
# ============================================================================

# Global graph instance with persistent checkpointer
_GRAPH_INSTANCE = None

def get_graph():
    """Get or create the compiled graph with checkpointer"""
    global _GRAPH_INSTANCE
    if _GRAPH_INSTANCE is None:
        print(f"[DEBUG AGENT] Creating NEW graph instance!")
        _GRAPH_INSTANCE = create_agent_graph()
    else:
        print(f"[DEBUG AGENT] Reusing existing graph instance")
    return _GRAPH_INSTANCE

def reset_agent():
    """Reset the agent by clearing the graph instance"""
    global _GRAPH_INSTANCE
    _GRAPH_INSTANCE = None

def run_agent(images: List[str], user_message: str = None, thread_id: str = "main"):
    """
    Main interface to run the agent with interrupt-based human-in-the-loop

    Args:
        images: List of image URLs/base64 for initial upload
        user_message: User's message (for resuming after interrupt)
        thread_id: Unique identifier for the user session (required for multi-user support)

    Returns:
        Updated state with agent's response
    """
    from langgraph.types import Command

    graph = get_graph()
    thread_config = {"configurable": {"thread_id": thread_id}}

    # Initialize state if new conversation (images provided)
    if images and len(images) > 0:
        initial_state = AgentState(
            images=images,
            messages=[],
            aesthetic_genre_keywords=[],
            mood_atmosphere=[],
            core_themes=[],
            tropes=[],
            feels_like="",
            vibe_refinement_count=0,
            retrieved_books=[],
            books_with_metadata=[],
            q1_question="",
            q2_question="",
            user_preferences={},
            final_books=[],
            soundtrack_url="",
            reasoning=[]
        )
        # Start the graph - it will stop at first interrupt()
        result = graph.invoke(initial_state, thread_config)
        return result

    # Resume with user's message
    if user_message:
        # Check current state before resuming
        current_state = graph.get_state(thread_config)
        print(f"[DEBUG AGENT] State BEFORE resume:")
        print(f"[DEBUG AGENT]   messages count: {len(current_state.values.get('messages', []))}")
        for i, m in enumerate(current_state.values.get('messages', [])):
            print(f"[DEBUG AGENT]   msg[{i}]: {m.get('role')} - {m.get('content', '')[:60]}...")
        print(f"[DEBUG AGENT]   q1_question: '{current_state.values.get('q1_question', '')[:50] if current_state.values.get('q1_question') else 'EMPTY'}'")
        
        # Resume from the last interrupt; the value passed to Command(resume=...)
        # is what the corresponding interrupt(...) call will return inside the node.
        print(f"[DEBUG AGENT] Resuming graph with user_message: {user_message[:50]}...")
        result = graph.invoke(Command(resume=user_message), thread_config)
        print(f"[DEBUG AGENT] graph.invoke returned: {type(result)}, keys: {list(result.keys()) if hasattr(result, 'keys') else 'N/A'}")
        print(f"[DEBUG AGENT] result has {len(result.get('messages', []))} messages")
        
        # Remove __interrupt__ key if present before returning
        if "__interrupt__" in result:
            result = {k: v for k, v in result.items() if k != "__interrupt__"}
        return result

    return None