desert
commited on
Commit
·
d67d04a
1
Parent(s):
21886ee
del
Browse files
app.py
CHANGED
|
@@ -2,17 +2,22 @@ import gradio as gr
|
|
| 2 |
from unsloth import FastLanguageModel
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
max_seq_length = 2048
|
| 6 |
-
dtype = None
|
| 7 |
-
load_in_4bit = True
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 10 |
-
model_name
|
| 11 |
-
max_seq_length
|
| 12 |
-
dtype
|
| 13 |
-
load_in_4bit
|
| 14 |
)
|
| 15 |
|
|
|
|
|
|
|
| 16 |
# Respond function
|
| 17 |
def respond(
|
| 18 |
message,
|
|
@@ -45,7 +50,7 @@ def respond(
|
|
| 45 |
|
| 46 |
# Generate the response using your model
|
| 47 |
outputs = model.generate(
|
| 48 |
-
input_ids=inputs["input_ids"],
|
| 49 |
max_new_tokens=max_tokens,
|
| 50 |
temperature=temperature,
|
| 51 |
top_p=top_p,
|
|
|
|
| 2 |
from unsloth import FastLanguageModel
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
| 6 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
| 7 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
| 8 |
+
|
| 9 |
+
# Check for GPU availability and use the appropriate device
|
| 10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 13 |
+
model_name="llama_lora_model_1",
|
| 14 |
+
max_seq_length=max_seq_length,
|
| 15 |
+
dtype=dtype,
|
| 16 |
+
load_in_4bit=load_in_4bit,
|
| 17 |
)
|
| 18 |
|
| 19 |
+
model.to(device) # Move model to the appropriate device
|
| 20 |
+
|
| 21 |
# Respond function
|
| 22 |
def respond(
|
| 23 |
message,
|
|
|
|
| 50 |
|
| 51 |
# Generate the response using your model
|
| 52 |
outputs = model.generate(
|
| 53 |
+
input_ids=inputs["input_ids"].to(device), # Ensure input is on the correct device
|
| 54 |
max_new_tokens=max_tokens,
|
| 55 |
temperature=temperature,
|
| 56 |
top_p=top_p,
|