File size: 14,887 Bytes
5461265 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
#!/usr/bin/env python3
"""
HuggingFace Space for fine-tuning megalaa Coptic translation model
This Gradio app provides a user-friendly interface for training the
megalaa/coptic-english-translator model on your CopticScriptorium corpus.
"""
import gradio as gr
import os
import subprocess
import threading
import time
from pathlib import Path
# Global variable to track training status
training_status = {
"running": False,
"log": [],
"completed": False,
"error": None
}
def train_model(train_file, val_file, num_epochs, batch_size, learning_rate, hf_token, model_repo_name):
"""
Start model training with uploaded data files
"""
global training_status
# Reset status
training_status = {
"running": True,
"log": ["🚀 Starting training setup...\n"],
"completed": False,
"error": None
}
try:
# Save uploaded files
train_path = "train.jsonl"
val_path = "val.jsonl"
with open(train_path, "wb") as f:
f.write(train_file)
with open(val_path, "wb") as f:
f.write(val_file)
training_status["log"].append(f"✓ Training data saved: {train_path}\n")
training_status["log"].append(f"✓ Validation data saved: {val_path}\n")
# Create training script
script_content = f'''#!/usr/bin/env python3
import os
import json
import torch
from datasets import load_dataset
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
Seq2SeqTrainingArguments,
Seq2SeqTrainer,
DataCollatorForSeq2Seq,
)
from huggingface_hub import HfApi, login
from evaluate import load
import numpy as np
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# HuggingFace Hub configuration
HF_TOKEN = "{hf_token}"
MODEL_REPO_NAME = "{model_repo_name}"
if HF_TOKEN:
login(token=HF_TOKEN)
logger.info("✓ Logged in to HuggingFace Hub")
# Greekification for megalaa models
COPTIC_TO_GREEK = {{
"ⲁ": "α", "ⲃ": "β", "ⲅ": "γ", "ⲇ": "δ", "ⲉ": "ε", "ⲋ": "ϛ",
"ⲍ": "ζ", "ⲏ": "η", "ⲑ": "θ", "ⲓ": "ι", "ⲕ": "κ", "ⲗ": "λ",
"ⲙ": "μ", "ⲛ": "ν", "ⲝ": "ξ", "ⲟ": "ο", "ⲡ": "π", "ⲣ": "ρ",
"ⲥ": "σ", "ⲧ": "τ", "ⲩ": "υ", "ⲫ": "φ", "ⲭ": "χ", "ⲯ": "ψ",
"ⲱ": "ω", "ϣ": "s", "ϥ": "f", "ϧ": "k", "ϩ": "h", "ϫ": "j",
"ϭ": "c", "ϯ": "t",
}}
def greekify(text):
if not text:
return ""
return "".join(COPTIC_TO_GREEK.get(c.lower(), c.lower()) for c in text)
def extract_parallel_texts(examples):
coptic_texts = []
english_texts = []
for messages in examples['messages']:
coptic_text = None
english_text = None
for msg in messages:
if msg['role'] == 'user' and 'Coptic text to English:' in msg['content']:
coptic_text = msg['content'].split('Coptic text to English:')[-1].strip()
elif msg['role'] == 'assistant':
english_text = msg['content']
coptic_texts.append(coptic_text)
english_texts.append(english_text)
return {{'coptic': coptic_texts, 'english': english_texts}}
def preprocess_function(examples, tokenizer, max_length=256):
greekified_coptic = [greekify(text.lower()) if text else "" for text in examples["coptic"]]
model_inputs = tokenizer(
greekified_coptic,
max_length=max_length,
truncation=True,
padding="max_length"
)
labels = tokenizer(
text_target=examples["english"],
max_length=max_length,
truncation=True,
padding="max_length"
)
labels["input_ids"] = [
[(label if label != tokenizer.pad_token_id else -100) for label in labels_example]
for labels_example in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
def compute_metrics(eval_preds, tokenizer, metric):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_labels = [[label] for label in decoded_labels]
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
return {{"bleu": result["score"]}}
# Configuration
model_name = "megalaa/coptic-english-translator"
output_dir = "coptic_megalaa_finetuned"
num_epochs = {num_epochs}
batch_size = {batch_size}
learning_rate = {learning_rate}
logger.info("="*60)
logger.info("MEGALAA FINE-TUNING ON HUGGINGFACE SPACES")
logger.info("="*60)
logger.info(f"Base model: {{model_name}}")
logger.info(f"Epochs: {{num_epochs}}")
logger.info(f"Batch size: {{batch_size}}")
logger.info(f"Learning rate: {{learning_rate}}")
# Check GPU
if torch.cuda.is_available():
logger.info(f"GPU: {{torch.cuda.get_device_name(0)}}")
logger.info(f"GPU Memory: {{torch.cuda.get_device_properties(0).total_memory / (1024**3):.1f}} GB")
else:
logger.warning("No GPU detected!")
# Load model
logger.info("\\nLoading model...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Load datasets
logger.info("Loading datasets...")
train_dataset = load_dataset('json', data_files='{train_path}', split='train')
val_dataset = load_dataset('json', data_files='{val_path}', split='train')
logger.info(f"Train samples: {{len(train_dataset):,}}")
logger.info(f"Validation samples: {{len(val_dataset):,}}")
# Extract and tokenize
logger.info("Processing datasets...")
train_dataset = train_dataset.map(extract_parallel_texts, batched=True, remove_columns=['messages'])
val_dataset = val_dataset.map(extract_parallel_texts, batched=True, remove_columns=['messages'])
tokenized_train = train_dataset.map(
lambda examples: preprocess_function(examples, tokenizer),
batched=True,
remove_columns=['coptic', 'english']
)
tokenized_val = val_dataset.map(
lambda examples: preprocess_function(examples, tokenizer),
batched=True,
remove_columns=['coptic', 'english']
)
# Setup training
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, padding=True)
metric = load("sacrebleu")
training_args = Seq2SeqTrainingArguments(
output_dir=output_dir,
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
gradient_accumulation_steps=2,
learning_rate=learning_rate,
warmup_steps=500,
max_grad_norm=1.0,
weight_decay=0.01,
eval_strategy="steps",
eval_steps=500,
logging_steps=50,
save_steps=500,
save_total_limit=3,
load_best_model_at_end=True,
metric_for_best_model="bleu",
greater_is_better=True,
predict_with_generate=True,
generation_max_length=256,
generation_num_beams=5,
fp16=torch.cuda.is_available(),
report_to="tensorboard",
logging_dir=f"{{output_dir}}/logs",
push_to_hub=False,
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_val,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=lambda eval_preds: compute_metrics(eval_preds, tokenizer, metric)
)
logger.info("\\nSTARTING TRAINING")
logger.info("="*60)
# Train
trainer.train()
# Save locally
logger.info("\\nSaving final model...")
trainer.save_model(f"{{output_dir}}/final")
tokenizer.save_pretrained(f"{{output_dir}}/final")
# Push to HuggingFace Hub
if HF_TOKEN and MODEL_REPO_NAME:
logger.info(f"\\nPushing model to HuggingFace Hub: {{MODEL_REPO_NAME}}")
try:
api = HfApi()
api.create_repo(repo_id=MODEL_REPO_NAME, repo_type="model", exist_ok=True)
# Upload all files
api.upload_folder(
folder_path=f"{{output_dir}}/final",
repo_id=MODEL_REPO_NAME,
repo_type="model",
)
logger.info(f"✅ Model successfully pushed to: https://huggingface.co/{{MODEL_REPO_NAME}}")
except Exception as e:
logger.error(f"❌ Failed to push to Hub: {{e}}")
# Final evaluation
logger.info("\\nFinal evaluation...")
eval_results = trainer.evaluate()
logger.info("\\n" + "="*60)
logger.info("TRAINING COMPLETE!")
logger.info("="*60)
for key, value in eval_results.items():
logger.info(f"{{key}}: {{value}}")
logger.info(f"\\n✅ Model saved locally to: {{output_dir}}/final")
if HF_TOKEN and MODEL_REPO_NAME:
logger.info(f"✅ Model available at: https://huggingface.co/{{MODEL_REPO_NAME}}")
'''
with open("train_script.py", "w") as f:
f.write(script_content)
training_status["log"].append("✓ Training script created\n")
training_status["log"].append("🚀 Starting training...\n\n")
# Run training in subprocess
process = subprocess.Popen(
["python", "train_script.py"],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1
)
# Stream output
for line in process.stdout:
training_status["log"].append(line)
time.sleep(0.01) # Small delay to allow UI updates
process.wait()
if process.returncode == 0:
training_status["completed"] = True
training_status["log"].append("\n\n✅ TRAINING COMPLETED SUCCESSFULLY!\n")
training_status["log"].append("📦 Model saved locally to: coptic_megalaa_finetuned/final\n")
if hf_token and model_repo_name:
training_status["log"].append(f"📦 Model pushed to: https://huggingface.co/{model_repo_name}\n")
else:
training_status["error"] = f"Training failed with exit code {process.returncode}"
training_status["log"].append(f"\n\n❌ Training failed with exit code {process.returncode}\n")
except Exception as e:
training_status["error"] = str(e)
training_status["log"].append(f"\n\n❌ Error: {str(e)}\n")
finally:
training_status["running"] = False
def start_training(train_file, val_file, num_epochs, batch_size, learning_rate, hf_token, model_repo_name):
"""
Start training in background thread
"""
if training_status["running"]:
return "⚠️ Training already in progress!"
if not hf_token or not model_repo_name:
return "⚠️ Please provide both HuggingFace Token and Model Repository Name!"
# Start training thread
thread = threading.Thread(
target=train_model,
args=(train_file, val_file, num_epochs, batch_size, learning_rate, hf_token, model_repo_name)
)
thread.daemon = True
thread.start()
return "🚀 Training started! Monitor progress in the logs below."
def get_training_log():
"""
Return current training log
"""
return "".join(training_status["log"])
def check_status():
"""
Return training status
"""
if training_status["completed"]:
return "✅ Training completed!"
elif training_status["error"]:
return f"❌ Error: {training_status['error']}"
elif training_status["running"]:
return "🔄 Training in progress..."
else:
return "⏸️ Ready to train"
# Create Gradio interface
with gr.Blocks(title="Megalaa Coptic Fine-tuning") as demo:
gr.Markdown("""
# 🏛️ Megalaa Coptic Translation Fine-tuning
Fine-tune the megalaa/coptic-english-translator model on your CopticScriptorium corpus.
**⚙️ IMPORTANT:** Make sure this Space is running on **T4 Small GPU** for optimal performance!
""")
with gr.Row():
with gr.Column():
gr.Markdown("### 🔑 HuggingFace Hub Configuration")
hf_token_input = gr.Textbox(
label="HuggingFace Token",
placeholder="hf_...",
type="password",
info="Get your token from https://huggingface.co/settings/tokens"
)
model_repo_input = gr.Textbox(
label="Model Repository Name",
placeholder="username/coptic-megalaa-finetuned",
info="Example: john-doe/coptic-megalaa-finetuned"
)
gr.Markdown("### 📤 Upload Training Data")
train_file_upload = gr.File(
label="Training Data (train.jsonl)",
file_types=[".jsonl"]
)
val_file_upload = gr.File(
label="Validation Data (val.jsonl)",
file_types=[".jsonl"]
)
gr.Markdown("### ⚙️ Training Parameters")
num_epochs = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of Epochs"
)
batch_size = gr.Slider(
minimum=4,
maximum=16,
value=8,
step=4,
label="Batch Size"
)
learning_rate = gr.Number(
value=2e-5,
label="Learning Rate"
)
start_btn = gr.Button("🚀 Start Training", variant="primary", size="lg")
status_text = gr.Textbox(label="Status", value="⏸️ Ready to train")
with gr.Column():
gr.Markdown("### 📊 Training Log")
log_output = gr.Textbox(
label="Real-time Training Log",
lines=30,
max_lines=30,
autoscroll=True,
every=2
)
# Button actions
start_btn.click(
fn=start_training,
inputs=[train_file_upload, val_file_upload, num_epochs, batch_size, learning_rate, hf_token_input, model_repo_input],
outputs=status_text
)
# Auto-refresh log and status
demo.load(fn=get_training_log, outputs=log_output, every=2)
demo.load(fn=check_status, outputs=status_text, every=2)
gr.Markdown("""
---
### 📥 After Training
When training completes, your fine-tuned model will be automatically pushed to HuggingFace Hub!
**Next steps:**
1. Visit your model repository at `https://huggingface.co/YOUR_USERNAME/MODEL_NAME`
2. Download and test with: `python evaluate_megalaa_model.py`
3. Integrate into your Coptic translation interface
4. Share your model with the community!
**Estimated training time:** 6-8 hours on T4 GPU
**Note:** The model is also saved temporarily to `coptic_megalaa_finetuned/final/` during training,
but this local copy will be lost when the Space restarts. Use the HuggingFace Hub version!
""")
if __name__ == "__main__":
demo.launch()
|