Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,547 Bytes
c925b1b 14d55ee c925b1b 14d55ee dd717c8 e94fd34 14d55ee a52613d cfc31fe 0d5b2ce c925b1b e5681ab 14d55ee e5681ab 14d55ee d0837bf 14d55ee d0837bf 14d55ee e5681ab 14d55ee c925b1b 14d55ee c925b1b 14d55ee c925b1b 14d55ee c925b1b b9151d3 c925b1b 0d5b2ce c925b1b 14d55ee c925b1b b383184 c925b1b b383184 c925b1b 14d55ee c925b1b 14d55ee c925b1b d0837bf c925b1b 14d55ee c925b1b 14d55ee c925b1b b9151d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from PIL import Image
from typing import Annotated, Iterator, Tuple
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
TOOL_SUMMARY = (
"Generate an image from a text prompt via an uncensored model; "
"tunable model/steps/guidance/size, supports negative prompt and seed; returns a PIL.Image. "
"Return the generated media to the user in this format ``."
)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=good_vae).to(device)
pipe.load_lora_weights("enhanceaiteam/Flux-Uncensored-V2")
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
@spaces.GPU(duration=25)
def infer(
prompt: Annotated[str, "Text description of the image to generate."],
seed: Annotated[int, "Random seed for reproducibility. Use 0 for a random seed per call."] = 42,
randomize_seed: Annotated[bool, "If true, pick a new random seed for every call (overrides seed)."] = True,
width: Annotated[int, "Output width in pixels (256–2048, multiple of 32 recommended)."] = 768,
height: Annotated[int, "Output height in pixels (256–2048, multiple of 32 recommended)."] = 768,
guidance_scale: Annotated[float, "Classifier-free guidance scale (1–15). Higher = follow the prompt more closely."] = 4.5,
num_inference_steps: Annotated[int, "Number of denoising steps (1–50). Higher = slower, potentially higher quality."] = 24,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Iterator[Tuple[Image.Image, int]]:
"""
Generate professional-quality images with Flux.1 dev paired with the Flux-Uncensored-V2 LoRA.
Streams intermediate frames so MCP clients can preview progress. Optimized for product photography,
fashion, concept art, and stock-style imagery where lighting and material realism matter.
Args:
prompt (str): Text description of the desired image.
seed (int): Random seed for reproducibility. Use 0 to randomize per call.
randomize_seed (bool): If true, ignore seed and pick a new random value per call.
width (int): Image width in pixels. Upper bound enforced by MAX_IMAGE_SIZE.
height (int): Image height in pixels. Upper bound enforced by MAX_IMAGE_SIZE.
guidance_scale (float): Classifier-free guidance strength.
num_inference_steps (int): Number of denoising iterations to perform.
progress (gr.Progress): Managed by Gradio to surface progress updates.
Yields:
tuple[Image.Image, int]: Intermediate or final image paired with the seed used.
Raises:
gr.Error: If the prompt is empty or the requested dimensions exceed MAX_IMAGE_SIZE.
"""
if not prompt or not prompt.strip():
raise gr.Error("Please provide a non-empty prompt.")
if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
raise gr.Error(f"Width and height must be <= {MAX_IMAGE_SIZE}.")
if randomize_seed or seed == 0:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
examples = [
[
"a tiny astronaut hatching from an egg on mars",
0,
True,
768,
768,
4.5,
24,
],
[
"a dog holding a sign that reads 'hello world'",
0,
True,
768,
768,
4.5,
24,
],
[
"an anime illustration of an apple strudel",
0,
True,
768,
768,
4.5,
24,
],
]
css="""
#col-container {
margin: 0 auto;
max-width: 620px;
}
"""
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Flux-Uncensored-V2 (LoRA)
Flux.1 dev base model enhanced with the Flux-Uncensored-V2 LoRA for unrestricted generation.
[[license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[base model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] [[LoRA](https://huggingface.co/enhanceaiteam/Flux-Uncensored-V2)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed (0 = random)",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="CFG Scale",
minimum=1,
maximum=15,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
step=1,
value=24,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed],
api_name="generate_image",
api_description=TOOL_SUMMARY,
)
if __name__ == "__main__":
demo.launch(mcp_server=True, theme="Nymbo/Nymbo_Theme", css=css) |