Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -82,6 +82,47 @@ def infer(
|
|
| 82 |
):
|
| 83 |
yield img, seed
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
examples = [
|
| 86 |
[
|
| 87 |
"a tiny astronaut hatching from an egg on mars",
|
|
@@ -197,13 +238,21 @@ with gr.Blocks() as demo:
|
|
| 197 |
cache_examples=False
|
| 198 |
)
|
| 199 |
|
|
|
|
| 200 |
gr.on(
|
| 201 |
triggers=[run_button.click, prompt.submit],
|
| 202 |
fn = infer,
|
| 203 |
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 204 |
outputs = [result, seed],
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
)
|
| 208 |
|
| 209 |
if __name__ == "__main__":
|
|
|
|
| 82 |
):
|
| 83 |
yield img, seed
|
| 84 |
|
| 85 |
+
|
| 86 |
+
@spaces.GPU(duration=25)
|
| 87 |
+
def infer_mcp(
|
| 88 |
+
prompt: Annotated[str, "Text description of the desired image."],
|
| 89 |
+
seed: Annotated[int, "Random seed for reproducibility. Use 0 to randomize per call."] = 42,
|
| 90 |
+
randomize_seed: Annotated[bool, "If true, ignore seed and pick a new random value per call."] = True,
|
| 91 |
+
width: Annotated[int, "Image width in pixels. Upper bound enforced by MAX_IMAGE_SIZE."] = 768,
|
| 92 |
+
height: Annotated[int, "Image height in pixels. Upper bound enforced by MAX_IMAGE_SIZE."] = 768,
|
| 93 |
+
guidance_scale: Annotated[float, "Classifier-free guidance strength."] = 4.5,
|
| 94 |
+
num_inference_steps: Annotated[int, "Number of denoising iterations to perform."] = 24,
|
| 95 |
+
) -> Tuple[Image.Image, int]:
|
| 96 |
+
"""
|
| 97 |
+
Generate an image from a text prompt via an uncensored model.
|
| 98 |
+
|
| 99 |
+
Returns the generated image and the seed used. Return the generated media
|
| 100 |
+
to the user in this format: ``.
|
| 101 |
+
"""
|
| 102 |
+
if not prompt or not prompt.strip():
|
| 103 |
+
raise gr.Error("Please provide a non-empty prompt.")
|
| 104 |
+
if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
|
| 105 |
+
raise gr.Error(f"Width and height must be <= {MAX_IMAGE_SIZE}.")
|
| 106 |
+
|
| 107 |
+
if randomize_seed or seed == 0:
|
| 108 |
+
seed = random.randint(0, MAX_SEED)
|
| 109 |
+
generator = torch.Generator().manual_seed(seed)
|
| 110 |
+
|
| 111 |
+
final_img = None
|
| 112 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 113 |
+
prompt=prompt,
|
| 114 |
+
guidance_scale=guidance_scale,
|
| 115 |
+
num_inference_steps=num_inference_steps,
|
| 116 |
+
width=width,
|
| 117 |
+
height=height,
|
| 118 |
+
generator=generator,
|
| 119 |
+
output_type="pil",
|
| 120 |
+
good_vae=good_vae,
|
| 121 |
+
):
|
| 122 |
+
final_img = img
|
| 123 |
+
|
| 124 |
+
return final_img, seed
|
| 125 |
+
|
| 126 |
examples = [
|
| 127 |
[
|
| 128 |
"a tiny astronaut hatching from an egg on mars",
|
|
|
|
| 238 |
cache_examples=False
|
| 239 |
)
|
| 240 |
|
| 241 |
+
# UI event: uses the generator for live preview (no api_name = not exposed to MCP)
|
| 242 |
gr.on(
|
| 243 |
triggers=[run_button.click, prompt.submit],
|
| 244 |
fn = infer,
|
| 245 |
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 246 |
outputs = [result, seed],
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
# MCP tool: uses non-generator function to avoid middleware issues
|
| 250 |
+
mcp_button = gr.Button("Generate (MCP)", visible=False)
|
| 251 |
+
mcp_button.click(
|
| 252 |
+
fn=infer_mcp,
|
| 253 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 254 |
+
outputs=[result, seed],
|
| 255 |
+
api_name="Fun_Img_infer",
|
| 256 |
)
|
| 257 |
|
| 258 |
if __name__ == "__main__":
|