grammar / app.py
Rajhuggingface4253's picture
Update app.py
cd3d90d verified
import os
import io
import logging
import zipfile
import tarfile
import time
import uvicorn
import fitz # PyMuPDF
import docx # python-docx
import pptx # python-pptx
import openpyxl
import pandas as pd
from PIL import Image
import pytesseract
from fastapi import FastAPI, UploadFile, File, HTTPException, Header, BackgroundTasks, Body
from fastapi.middleware.cors import CORSMiddleware
from typing import List, Optional, Tuple
import asyncio
from concurrent.futures import ThreadPoolExecutor
import magic
import chardet
import json
import xml.etree.ElementTree as ET
from pathlib import Path
import tempfile
import shutil
import subprocess
from pdf2image import convert_from_bytes
import concurrent.futures
from vector import vdb
from pydantic import BaseModel
from typing import Optional
from typing import List, Dict
from fastapi.responses import JSONResponse
import numpy as np
import re
# ==================== CONFIGURATION ====================
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s | %(levelname)s | %(name)s | %(message)s'
)
logger = logging.getLogger("ProductionExtractor")
# Production Configuration
class Config:
MAX_ZIP_DEPTH = 3
MAX_FILES_IN_ZIP = 100
MAX_FILE_SIZE_MB = 50
MAX_TOTAL_SIZE_MB = 500
TIMEOUT_SECONDS = 300
WORKER_THREADS = 4
TEXTRACT_TIMEOUT = 30
MAX_PDF_PAGES = 100
TESSERACT_TIMEOUT = 60
ENABLE_OCR = True
MAX_IMAGE_PIXELS = 80_000_000 # ~40MP limit for PIL
OCR_LANGUAGE = os.getenv("TESSERACT_LANGUAGE", "eng+hin")
class SearchRequest(BaseModel):
query: str
target: Optional[str] = None
# Performance metrics tracking
metrics = {
"files_processed": 0,
"total_bytes": 0,
"processing_time": 0,
"errors": []
}
app = FastAPI(
title="NeuralStream Production Extractor",
version="1.0.0",
description="High-performance file extraction service with support for 50+ file types",
docs_url="/docs",
redoc_url="/redoc"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Thread pool for blocking operations
executor = ThreadPoolExecutor(max_workers=Config.WORKER_THREADS)
# Configure Tesseract path if needed
if os.name == 'nt': # Windows
tesseract_path = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
if os.path.exists(tesseract_path):
pytesseract.pytesseract.tesseract_cmd = tesseract_path
# ==================== UTILITY FUNCTIONS ====================
def sanitize_filename(filename: str) -> str:
"""Sanitize filename to prevent path traversal attacks."""
return os.path.basename(filename).replace('\\', '/')
def get_file_extension(filename: str) -> str:
"""Extract file extension in a safe way."""
return Path(filename).suffix.lower()
def detect_file_type(content: bytes, filename: str) -> str:
"""Detect file type using both magic numbers and extension."""
try:
mime = magic.from_buffer(content[:2048], mime=True)
return mime
except Exception:
ext = get_file_extension(filename)
return f"extension/{ext}"
def is_binary_file(content: bytes) -> bool:
"""Heuristic check if file is binary."""
if not content:
return False
if b'\x00' in content[:1024]:
return True
# Check if >30% of bytes are non-printable
text_chars = bytearray({7,8,9,10,12,13,27} | set(range(0x20, 0x100)) - {0x7f})
sample = content[:1024] if len(content) >= 1024 else content
if len(sample) == 0:
return False
try:
non_text = sample.translate(None, text_chars)
return float(len(non_text)) / len(sample) > 0.3
except:
return False
def truncate_content(content: str, max_length: int = 100000) -> str:
"""Truncate content if too long, keeping start and end."""
if len(content) <= max_length:
return content
half = max_length // 2
return content[:half] + f"\n\n[... TRUNCATED {len(content) - max_length} CHARACTERS ...]\n\n" + content[-half:]
# ==================== EXTRACTION ENGINES ====================
def decode_text_safe(content: bytes, filename: str) -> str:
"""Tier 1: Universal text extraction with advanced encoding detection."""
try:
# Try UTF-8 first (most common)
try:
decoded = content.decode('utf-8')
if not is_binary_file(content):
return format_text_content(decoded, filename, 'utf-8')
except UnicodeDecodeError:
pass
# Try common encodings
for encoding in ['utf-8-sig', 'latin-1', 'cp1252', 'ascii']:
try:
decoded = content.decode(encoding)
if not is_binary_file(content):
return format_text_content(decoded, filename, encoding)
except UnicodeDecodeError:
continue
# Fallback to chardet
try:
detection = chardet.detect(content)
encoding = detection['encoding'] or 'utf-8'
decoded = content.decode(encoding, errors='replace')
return format_text_content(decoded, filename, f"{encoding} (detected)")
except:
return f"\n--- BINARY/TEXT FILE: {filename} ---\n[Content appears to be binary or has unknown encoding]\n"
except Exception as e:
logger.error(f"Text extraction error for {filename}: {e}")
return f"\n[Error extracting text from {filename}: {str(e)}]\n"
def format_text_content(content: str, filename: str, encoding: str) -> str:
"""Format text content with metadata."""
content = truncate_content(content)
return f"""
--- TEXT FILE: {filename} ---
Encoding: {encoding}
Size: {len(content)} characters
{content}
--- END TEXT FILE ---
"""
# ==================== DOCUMENT EXTRACTION ====================
def extract_pdf(content: bytes, filename: str) -> str:
"""Advanced PDF extraction with OCR fallback."""
start_time = time.time()
try:
text_buffer = []
metadata_info = []
with fitz.open(stream=content, filetype="pdf") as doc:
if doc.is_encrypted:
try:
doc.authenticate("")
except:
return f"\n[ENCRYPTED PDF: {filename} - Cannot extract content]\n"
metadata = doc.metadata
if metadata:
metadata_info.append(f"Title: {metadata.get('title', 'N/A')}")
metadata_info.append(f"Author: {metadata.get('author', 'N/A')}")
metadata_info.append(f"Subject: {metadata.get('subject', 'N/A')}")
metadata_info.append(f"Created: {metadata.get('creationDate', 'N/A')}")
total_pages = len(doc)
pages_extracted = 0
for i, page in enumerate(doc):
if i >= Config.MAX_PDF_PAGES:
text_buffer.append(f"\n[... Truncated at {Config.MAX_PDF_PAGES} pages from total {total_pages} ...]\n")
break
page_text = page.get_text("text")
if page_text.strip():
text_buffer.append(f"\n--- Page {i+1} ---")
text_buffer.append(page_text)
pages_extracted += 1
full_text = "\n".join(text_buffer)
if len(full_text.strip()) < 10 and Config.ENABLE_OCR:
logger.info(f"PDF appears to be scanned, attempting OCR: {filename}")
ocr_result = extract_text_from_image_pdf(content, filename)
if ocr_result:
elapsed = time.time() - start_time
return f"""
=== PDF DOCUMENT (OCR): {filename} ===
Metadata:
{chr(10).join(metadata_info)}
Processing Time: {elapsed:.2f}s
Pages: {pages_extracted}/{total_pages}
{ocr_result}
=== END PDF ===
"""
elapsed = time.time() - start_time
return f"""
=== PDF DOCUMENT: {filename} ===
Metadata:
{chr(10).join(metadata_info)}
Extraction Time: {elapsed:.2f}s
Pages: {pages_extracted}/{total_pages}
{full_text}
=== END PDF ===
"""
except Exception as e:
logger.error(f"PDF extraction error for {filename}: {e}")
return f"\n[Error parsing PDF {filename}: {str(e)}]\n"
def extract_docx(content: bytes, filename: str) -> str:
"""Advanced DOCX extraction with tables."""
try:
doc = docx.Document(io.BytesIO(content))
properties = []
if doc.core_properties.title:
properties.append(f"Title: {doc.core_properties.title}")
if doc.core_properties.author:
properties.append(f"Author: {doc.core_properties.author}")
if doc.core_properties.created:
properties.append(f"Created: {doc.core_properties.created}")
paragraphs = []
for para in doc.paragraphs:
if para.text.strip():
paragraphs.append(para.text)
tables_text = []
for i, table in enumerate(doc.tables):
table_data = []
for row in table.rows:
row_data = [cell.text for cell in row.cells]
table_data.append(" | ".join(row_data))
if table_data:
tables_text.append(f"\n--- Table {i+1} ---")
tables_text.append("\n".join(table_data))
result = "\n".join(paragraphs)
if tables_text:
result += "\n" + "\n".join(tables_text)
return f"""
=== WORD DOCUMENT: {filename} ===
Metadata:
{chr(10).join(properties)}
{result}
=== END DOCUMENT ===
"""
except Exception as e:
logger.error(f"DOCX extraction error for {filename}: {e}")
return f"\n[Error parsing DOCX {filename}: {str(e)}]\n"
def extract_pptx(content: bytes, filename: str) -> str:
"""Extract text from PowerPoint presentations."""
try:
prs = pptx.Presentation(io.BytesIO(content))
text_slides = []
for i, slide in enumerate(prs.slides):
slide_text = []
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text:
if shape.text.strip():
slide_text.append(shape.text)
# Check for table text
if shape.has_table:
for row in shape.table.rows:
for cell in row.cells:
if cell.text.strip():
slide_text.append(cell.text)
if slide_text:
text_slides.append(f"\n--- Slide {i+1} ---")
text_slides.extend(slide_text)
return f"""
=== POWERPOINT: {filename} ===
Slides: {len(prs.slides)}
{chr(10).join(text_slides)}
=== END POWERPOINT ===
"""
except Exception as e:
logger.error(f"PPTX extraction error for {filename}: {e}")
return f"\n[Error parsing PPTX {filename}: {str(e)}]\n"
def extract_excel(content: bytes, filename: str) -> str:
"""Extract data from Excel files."""
try:
wb = openpyxl.load_workbook(io.BytesIO(content), read_only=True, data_only=True)
sheets_data = []
for sheet_name in wb.sheetnames:
sheet = wb[sheet_name]
sheet_rows = []
max_rows = 100
for i, row in enumerate(sheet.iter_rows(values_only=True)):
if i >= max_rows:
break
row_data = [str(cell) if cell is not None else "" for cell in row]
sheet_rows.append(" | ".join(row_data))
if sheet_rows:
sheets_data.append(f"\n--- Sheet: {sheet_name} ---")
sheets_data.extend(sheet_rows)
if len(sheet_rows) >= max_rows:
sheets_data.append(f"[... Only first {max_rows} rows shown ...]")
try:
df = pd.read_excel(io.BytesIO(content), engine='openpyxl')
pandas_output = df.head(50).to_string(index=False, max_rows=50, max_colwidth=50)
if pandas_output:
sheets_data.append("\n--- Pandas Format (First 50 rows) ---")
sheets_data.append(pandas_output)
if len(df) > 50:
sheets_data.append(f"[... {len(df) - 50} more rows truncated ...]")
except Exception as pandas_error:
logger.warning(f"Pandas extraction failed: {pandas_error}")
return f"""
=== EXCEL FILE: {filename} ===
{chr(10).join(sheets_data)}
=== END EXCEL ===
"""
except Exception as e:
logger.error(f"Excel extraction error for {filename}: {e}")
return f"\n[Error parsing Excel {filename}: {str(e)}]\n"
# ==================== IMAGE EXTRACTION ====================
def extract_text_from_image_pdf(pdf_content: bytes, filename: str) -> Optional[str]:
"""Extract text from image-based PDF using OCR with pdf2image."""
if not Config.ENABLE_OCR:
return None
try:
extracted_text = []
# Convert PDF to images with proper error handling
images = convert_from_bytes(
pdf_content,
dpi=300,
fmt='jpeg',
thread_count=2,
poppler_path=None # Will use system poppler
)
logger.info(f"Converted {len(images)} pages from {filename} for OCR")
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
future_to_page = {
executor.submit(perform_ocr_on_image, image, page_num): page_num
for page_num, image in enumerate(images[:Config.MAX_PDF_PAGES])
}
for future in concurrent.futures.as_completed(future_to_page, timeout=Config.TESSERACT_TIMEOUT):
page_num = future_to_page[future]
try:
text = future.result(timeout=30)
if text and text.strip():
extracted_text.append(f"\n--- Page {page_num + 1} (OCR) ---")
extracted_text.append(text)
logger.info(f"OCR completed for page {page_num + 1}")
except Exception as e:
logger.warning(f"OCR failed for page {page_num + 1}: {e}")
continue
if extracted_text:
return "\n".join(extracted_text)
else:
return None
except Exception as e:
logger.error(f"PDF to image conversion or OCR failed for {filename}: {e}")
return None
def perform_ocr_on_image(image: Image.Image, page_num: int) -> str:
"""Perform OCR on a single image with proper configuration."""
try:
# Resize if too large
width, height = image.size
total_pixels = width * height
if total_pixels > Config.MAX_IMAGE_PIXELS:
scale_factor = (Config.MAX_IMAGE_PIXELS / total_pixels) ** 0.5
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
logger.info(f"Resized page {page_num + 1} from {width}x{height} to {new_width}x{new_height}")
# Configure Tesseract
custom_config = f'--oem 3 --psm 3 -l {Config.OCR_LANGUAGE}'
# Perform OCR
text = pytesseract.image_to_string(image, config=custom_config, timeout=30)
return truncate_content(text.strip(), max_length=50000)
except Exception as e:
logger.error(f"OCR error on page {page_num + 1}: {e}")
return ""
def extract_image_ocr(content: bytes, filename: str) -> str:
"""Extract text from image files using OCR."""
if not Config.ENABLE_OCR:
return f"\n[IMAGE FILE: {filename}]\n[Image extraction disabled]\n"
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=get_file_extension(filename)) as temp_img:
temp_img.write(content)
temp_img.flush()
try:
# Open and check image
with Image.open(temp_img.name) as img:
img = img.convert('RGB') # Ensure RGB mode
# Resize if too large
width, height = img.size
total_pixels = width * height
if total_pixels > Config.MAX_IMAGE_PIXELS:
scale_factor = (Config.MAX_IMAGE_PIXELS / total_pixels) ** 0.5
new_size = (int(width * scale_factor), int(height * scale_factor))
img = img.resize(new_size, Image.Resampling.LANCZOS)
# Perform OCR
custom_config = f'--oem 3 --psm 3 -l {Config.OCR_LANGUAGE}'
text = pytesseract.image_to_string(img, config=custom_config, timeout=30)
if text.strip():
return f"""
--- IMAGE FILE (OCR): {filename} ---
Size: {img.size[0]}x{img.size[1]} pixels
Format: {img.format}
Extracted Text:
{text.strip()}
--- END IMAGE ---
"""
else:
return f"\n[IMAGE FILE: {filename}]\n[No text detected in image]\n"
finally:
os.unlink(temp_img.name)
except Exception as e:
logger.error(f"Image OCR extraction error for {filename}: {e}")
return f"\n[Error processing image {filename}: {str(e)}]\n"
# ==================== ARCHIVE EXTRACTION ====================
def process_zip_archive(zip_bytes: bytes, zip_name: str, depth: int = 0) -> Tuple[str, int]:
"""Recursive ZIP extraction with safety limits."""
if depth > Config.MAX_ZIP_DEPTH:
return f"\n[ZIP Depth Limit Reached: {zip_name}]\n", 0
output_log = f"\n>>> ZIP ARCHIVE: {zip_name} (Depth {depth}) <<<\n"
file_count = 0
total_size = 0
try:
with zipfile.ZipFile(io.BytesIO(zip_bytes)) as z:
file_list = [f for f in z.infolist()
if not f.filename.startswith(('.', '__'))
and not f.is_dir()]
for zf in file_list:
if file_count >= Config.MAX_FILES_IN_ZIP:
output_log += f"\n[... File limit reached: {Config.MAX_FILES_IN_ZIP} files ...]\n"
break
if zf.file_size == 0 or zf.file_size > (Config.MAX_FILE_SIZE_MB * 1024 * 1024):
continue
total_size += zf.file_size
if total_size > (Config.MAX_TOTAL_SIZE_MB * 1024 * 1024):
output_log += f"\n[... Total size limit reached: {Config.MAX_TOTAL_SIZE_MB}MB ...]\n"
break
try:
with z.open(zf) as f:
content = f.read()
ext = get_file_extension(zf.filename)
if ext in ['.zip']:
nested_output, nested_count = process_zip_archive(content, zf.filename, depth + 1)
output_log += nested_output
file_count += nested_count
else:
output_log += process_file_bytes(zf.filename, content)
file_count += 1
except Exception as e:
logger.error(f"Error processing nested file {zf.filename}: {e}")
output_log += f"\n[Error processing {zf.filename} inside {zip_name}]\n"
continue
except zipfile.BadZipFile:
return f"\n[Error: Corrupt Zip Archive - {zip_name}]\n", 0
except Exception as e:
logger.error(f"Zip processing error for {zip_name}: {e}")
return f"\n[Zip Processing Error: {str(e)}]\n", 0
output_log += f"\n>>> END ZIP: {zip_name} ({file_count} files) <<<\n"
return output_log, file_count
def extract_tar_gz(content: bytes, filename: str) -> str:
"""Extract files from tar.gz archives."""
output_log = f"\n>>> TAR.GZ ARCHIVE: {filename} <<<\n"
file_count = 0
try:
# Determine compression mode
if filename.endswith('.tar.gz') or filename.endswith('.tgz'):
mode = 'r:gz'
elif filename.endswith('.tar.bz2'):
mode = 'r:bz2'
elif filename.endswith('.tar.xz'):
mode = 'r:xz'
else:
mode = 'r:'
with tarfile.open(fileobj=io.BytesIO(content), mode=mode) as tar:
members = [m for m in tar.getmembers()
if m.isfile()
and not m.name.startswith(('.', '__'))
and m.size <= (Config.MAX_FILE_SIZE_MB * 1024 * 1024)]
for member in members:
if file_count >= Config.MAX_FILES_IN_ZIP:
output_log += "\n[...Tar file limit reached...]\n"
break
try:
f = tar.extractfile(member)
if f:
content = f.read()
output_log += process_file_bytes(member.name, content)
file_count += 1
except Exception as e:
logger.error(f"Error extracting {member.name}: {e}")
continue
except Exception as e:
logger.error(f"TAR extraction error for {filename}: {e}")
return f"\n[Error processing TAR {filename}: {str(e)}]\n"
output_log += f"\n>>> END TAR: {filename} ({file_count} files) <<<\n"
return output_log
# ==================== STRUCTURED DATA EXTRACTION ====================
def extract_json(content: bytes, filename: str) -> str:
"""Extract and format JSON files."""
try:
json_obj = json.loads(content.decode('utf-8'))
formatted = json.dumps(json_obj, indent=2, ensure_ascii=False)
return f"""
=== JSON FILE: {filename} ===
{formatted}
=== END JSON ===
"""
except Exception as e:
logger.error(f"JSON parsing error for {filename}: {e}")
return decode_text_safe(content, filename)
def extract_xml(content: bytes, filename: str) -> str:
"""Extract readable text from XML files."""
try:
root = ET.fromstring(content)
def extract_text(element, depth=0):
text_parts = []
indent = " " * depth
text_parts.append(f"{indent}<{element.tag}>")
if element.text and element.text.strip():
text_parts.append(f"{indent} {element.text.strip()}")
for child in element:
text_parts.extend(extract_text(child, depth + 1))
text_parts.append(f"{indent}</{element.tag}>")
return text_parts
extracted = extract_text(root)
return f"""
=== XML FILE: {filename} ===
{chr(10).join(extracted)}
=== END XML ===
"""
except Exception as e:
logger.error(f"XML parsing error for {filename}: {e}")
return decode_text_safe(content, filename)
def extract_csv(content: bytes, filename: str) -> str:
"""Extract and format CSV files."""
try:
df = pd.read_csv(io.BytesIO(content), encoding_errors='replace')
output = df.head(100).to_string(index=False, max_rows=100, max_colwidth=50)
row_count = len(df)
result = f"""
=== CSV FILE: {filename} ===
Total Rows: {row_count}
Columns: {', '.join(df.columns.astype(str))}
First 100 Rows:
{output}
"""
if row_count > 100:
result += f"\n[... {row_count - 100} more rows truncated ...]\n"
result += "\n=== END CSV ===\n"
return result
except Exception as e:
logger.error(f"CSV parsing error for {filename}: {e}")
return decode_text_safe(content, filename)
# ==================== MAIN ROUTING LOGIC ====================
def process_file_bytes(filename: str, content: bytes) -> str:
"""Route files to appropriate extraction engines."""
start_time = time.time()
safe_name = sanitize_filename(filename)
content_size = len(content)
ext = get_file_extension(safe_name)
try:
result = ""
# Document files
if ext == '.pdf':
result = extract_pdf(content, safe_name)
elif ext == '.docx':
result = extract_docx(content, safe_name)
elif ext == '.pptx':
result = extract_pptx(content, safe_name)
elif ext in ['.xlsx', '.xls']:
result = extract_excel(content, safe_name)
# Archive files
elif ext == '.zip':
archive_result, count = process_zip_archive(content, safe_name)
result = archive_result
elif ext in ['.tar', '.tar.gz', '.tgz', '.tar.bz2', '.tar.xz']:
result = extract_tar_gz(content, safe_name)
# Structured data
elif ext == '.json':
result = extract_json(content, safe_name)
elif ext == '.xml':
result = extract_xml(content, safe_name)
elif ext == '.csv':
result = extract_csv(content, safe_name)
# Image files with OCR
elif ext in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp', '.tiff', '.tif']:
result = extract_image_ocr(content, safe_name)
# Code and text files
elif ext in [
'.py', '.js', '.ts', '.tsx', '.jsx', '.vue', '.svelte',
'.java', '.kt', '.scala', '.clj', '.cljs', '.cljc',
'.c', '.cpp', '.h', '.hpp', '.cs', '.fs', '.vb',
'.go', '.rs', '.swift', '.dart', '.php', '.rb', '.pl',
'.lua', '.r', '.scm', '.hs', '.elm', '.ex', '.exs',
'.html', '.htm', '.xhtml', '.css', '.scss', '.sass', '.less',
'.yaml', '.yml', '.toml', '.ini', '.env', '.cfg',
'.svg', '.sql', '.sh', '.bash', '.zsh', '.fish',
'.ps1', '.bat', '.cmd', '.md', '.markdown', '.rst',
'.txt', '.log', '.tsv'
]:
result = decode_text_safe(content, safe_name)
# Binary files
elif ext in ['.exe', '.dll', '.so', '.dylib', '.bin', '.dat']:
result = f"\n[BINARY FILE: {safe_name}]\nSize: {content_size} bytes\n[Binary content not extractable]\n"
# Audio/Video files
elif ext in ['.mp3', '.mp4', '.avi', '.mov', '.wav', '.flac', '.mkv', '.webm']:
result = f"\n[MEDIA FILE: {safe_name}]\nSize: {content_size} bytes\n[Media content not extractable]\n"
# Database files
elif ext in ['.db', '.sqlite', '.sqlite3', '.mdb', '.accdb']:
result = f"\n[DATABASE FILE: {safe_name}]\n[Database content not extractable for security reasons]\n"
# Unknown file type
else:
file_type = detect_file_type(content, safe_name)
if not is_binary_file(content):
result = decode_text_safe(content, safe_name)
else:
result = f"\n[UNKNOWN FILE TYPE: {safe_name}]\nType: {file_type}\nSize: {content_size} bytes\n[Binary content not extractable]\n"
elapsed = time.time() - start_time
metrics["files_processed"] += 1
metrics["total_bytes"] += content_size
logger.info(f"Extracted {safe_name} ({content_size} bytes) in {elapsed:.2f}s")
return result
except Exception as e:
error_msg = f"Error processing {safe_name}: {str(e)}"
logger.error(error_msg)
metrics["errors"].append(error_msg)
return f"\n[FATAL ERROR processing {safe_name}: {str(e)}]\n"
async def process_file_async(file: UploadFile) -> str:
"""Process a single file asynchronously."""
loop = asyncio.get_event_loop()
try:
content = await file.read()
safe_name = sanitize_filename(file.filename)
if len(content) > (Config.MAX_FILE_SIZE_MB * 1024 * 1024):
return f"\n[ERROR: {safe_name} exceeds {Config.MAX_FILE_SIZE_MB}MB limit]\n"
result = await loop.run_in_executor(executor, process_file_bytes, safe_name, content)
return result
except Exception as e:
error_msg = f"Async processing error for {file.filename}: {str(e)}"
logger.error(error_msg)
metrics["errors"].append(error_msg)
return f"\n[ERROR processing {file.filename}: {str(e)}]\n"
# ==================== API ENDPOINTS ====================
@app.post("/api/ingest")
async def ingest_files(files: List[UploadFile] = File(...)):
"""Universal file ingestion endpoint with async processing."""
if not files:
raise HTTPException(status_code=400, detail="No files provided")
start_time = time.time()
logger.info(f"Processing batch of {len(files)} files")
tasks = [process_file_async(file) for file in files]
results = await asyncio.gather(*tasks, return_exceptions=True)
combined_result = ""
files_processed = 0
errors = []
total_size = 0
for i, result in enumerate(results):
if isinstance(result, Exception):
error_msg = f"Error processing {files[i].filename}: {str(result)}"
logger.error(error_msg)
errors.append(error_msg)
combined_result += f"\n[ERROR: {error_msg}]\n"
else:
combined_result += result
files_processed += 1
try:
if hasattr(files[i], 'size'):
total_size += files[i].size
except:
pass
elapsed = time.time() - start_time
logger.info(f"Batch processed in {elapsed:.2f}s - {files_processed} files, {total_size} bytes")
return {
"status": "success",
"extracted_text": combined_result,
"files_processed": files_processed,
"total_files": len(files),
"processing_time": elapsed,
"total_size_bytes": total_size,
"errors": errors if errors else []
}
import re # Ensure this is imported at the top of app.py
@app.post("/api/interaction")
async def interact_with_files(
files: List[UploadFile] = File(...),
x_user_id: str = Header(..., alias="X-User-ID"),
x_chat_id: str = Header(..., alias="X-Chat-ID")
):
"""
Process files and store them in vector DB with user session isolation.
INCLUDES FIX: Strips metadata headers before DB storage to prevent AST Parser crashes.
"""
if not files:
raise HTTPException(status_code=400, detail="No files provided")
start_time = time.time()
logger.info(f"📤 Processing {len(files)} files for user {x_user_id[:8]}...")
# 1. Extract text from files (Async processing)
tasks = [process_file_async(file) for file in files]
results = await asyncio.gather(*tasks, return_exceptions=True)
combined_result = ""
files_processed = 0
storage_errors = []
# Regex to strip the "Wrapper" headers (e.g., --- TEXT FILE: app.py ---)
# Matches: Header -> Metadata Block -> Double Newline -> CONTENT -> Double Newline -> Footer
wrapper_pattern = r"(?s)(?:---|===)\s+.*?(?:FILE|DOCUMENT).*?[-=]+\n.*?\n\n(.*?)\n\n(?:---|===) END"
# 2. Process each file and store in vector DB
for i, result in enumerate(results):
if isinstance(result, Exception):
error_msg = f"Error processing {files[i].filename}: {str(result)}"
logger.error(error_msg)
combined_result += f"\n[ERROR: {error_msg}]\n"
continue
# Add to combined result (Keep headers for the User UI!)
combined_result += result
files_processed += 1
# 3. Prepare Clean Content for Vector DB
filename = files[i].filename
clean_text_for_db = result
# Attempt to unwrap the content so the AST parser works
match = re.search(wrapper_pattern, result)
if match:
# Found the "meat" of the file, use that
clean_text_for_db = match.group(1)
else:
# Fallback: If regex misses (e.g. short file), use original but trim whitespace
clean_text_for_db = result.strip()
try:
# Get vector DB instance
from vector import vdb
# 4. SYNC storage in vector DB using CLEAN TEXT
# We pass the pure code (clean_text_for_db) but the real filename
# This allows V3 to parse classes/functions correctly while linking them to the source file.
storage_success = vdb.store_session_document(
text=clean_text_for_db,
filename=filename,
user_id=x_user_id,
chat_id=x_chat_id
)
if not storage_success:
error_msg = f"Vector storage failed for {filename}"
logger.error(error_msg)
storage_errors.append(error_msg)
combined_result += f"\n[WARNING: Vector storage failed for {filename}]\n"
else:
logger.info(f"✅ Vector storage successful for {filename}")
except Exception as e:
error_msg = f"Vector DB error for {filename}: {str(e)}"
logger.error(error_msg)
storage_errors.append(error_msg)
combined_result += f"\n[WARNING: {error_msg}]\n"
elapsed = time.time() - start_time
# 5. Return response
response_data = {
"status": "success",
"extracted_text": combined_result,
"files_processed": files_processed,
"total_files": len(files),
"processing_time": round(elapsed, 2),
"vector_status": "stored_synchronously",
"session_id": x_user_id,
"storage_errors": storage_errors if storage_errors else []
}
logger.info(f"✅ Interaction completed in {elapsed:.2f}s for user {x_user_id[:8]}")
return response_data
# Add debug endpoints for monitoring
@app.get("/api/vector/debug")
async def debug_vector_status(x_user_id: str = Header(..., alias="X-User-ID")):
"""Debug endpoint to check vector DB status"""
from vector import vdb
stats = vdb.get_user_stats(x_user_id)
return {
"user_id": x_user_id,
"stats": stats,
"index_status": {
"total_vectors": vdb.index.ntotal,
"total_metadata": len(vdb.metadata),
"index_type": vdb.index.__class__.__name__
}
}
@app.post("/api/vector/cleanup")
async def cleanup_vector_db(
max_age_hours: int = 24,
x_user_id: str = Header(..., alias="X-User-ID")
):
"""Clean up old session data"""
from vector import vdb
try:
cleaned = vdb.cleanup_old_sessions(max_age_hours)
return {
"status": "success",
"cleaned_vectors": cleaned,
"max_age_hours": max_age_hours,
"user_id": x_user_id
}
except Exception as e:
logger.error(f"Cleanup failed: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.delete("/api/session")
async def delete_specific_session(
x_user_id: str = Header(..., alias="X-User-ID"),
x_chat_id: str = Header(..., alias="X-Chat-ID")
):
"""Triggered when user clicks 'Delete Chat' in UI"""
from vector import vdb
# Run in thread to not block other users while rebuilding index
success = await asyncio.to_thread(vdb.delete_session, x_user_id, x_chat_id)
if success:
return {"status": "deleted", "chat_id": x_chat_id}
else:
return {"status": "not_found", "message": "Session was already empty"}
@app.post("/api/search")
async def search_vector_db(
payload: SearchRequest,
x_user_id: str = Header(..., alias="X-User-ID"),
x_chat_id: str = Header(..., alias="X-Chat-ID")
):
"""
Search within user's session data with proper JSON serialization.
"""
from vector import vdb
logger.info(f"🔍 Search request from user {x_user_id[:8]}: '{payload.query[:50]}...'")
try:
results = vdb.retrieve_session_context(
query=payload.query,
user_id=x_user_id,
chat_id=x_chat_id,
filter_type=payload.target,
top_k=50,
final_k=3
)
logger.info(f"✅ Search completed: {len(results)} results for user {x_user_id[:8]}")
# MANUALLY serialize to handle numpy types
def serialize(obj):
if isinstance(obj, (np.integer, np.floating)):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, dict):
return {k: serialize(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [serialize(item) for item in obj]
return obj
serialized_results = serialize(results)
# Use JSONResponse with custom encoder
return JSONResponse(
content={"results": serialized_results},
media_type="application/json"
)
except Exception as e:
logger.error(f"Search failed: {e}")
raise HTTPException(status_code=500, detail=f"Search failed: {str(e)}")
@app.post("/api/sync")
async def sync_chat_history(
background_tasks: BackgroundTasks,
messages: List[Dict] = Body(...),
x_user_id: str = Header(..., alias="X-User-ID"), # <--- 1. Catch the ID
x_chat_id: str = Header(..., alias="X-Chat-ID")
):
"""
Syncs chat history for the specific user session.
"""
if not messages:
return {"status": "ignored", "reason": "empty"}
# Trigger Secure Storage
background_tasks.add_task(
vdb.store_chat_context, # <--- Renamed Function
messages=messages,
user_id=x_user_id, # <--- Pass the ID
chat_id=x_chat_id,
)
return {"status": "syncing_started"}
@app.post("/api/single")
async def ingest_single_file(file: UploadFile = File(...)):
"""Process a single file endpoint."""
start_time = time.time()
result = await process_file_async(file)
elapsed = time.time() - start_time
logger.info(f"Single file processed in {elapsed:.2f}s")
return {
"status": "success",
"extracted_text": result,
"filename": file.filename,
"processing_time": elapsed,
"file_size": file.size
}
@app.get("/health")
async def health_check():
"""Comprehensive health check endpoint."""
return {
"status": "active",
"version": "1.0.0",
"engine": "High-Performance Production Extractor",
"config": {
"max_file_size_mb": Config.MAX_FILE_SIZE_MB,
"max_zip_depth": Config.MAX_ZIP_DEPTH,
"max_files_in_zip": Config.MAX_FILES_IN_ZIP,
"worker_threads": Config.WORKER_THREADS,
"enable_ocr": Config.ENABLE_OCR
},
"metrics": {
"files_processed": metrics["files_processed"],
"total_bytes_processed": metrics["total_bytes"],
"error_count": len(metrics["errors"])
},
"supported_types": [
"Documents: .pdf, .docx, .pptx, .xlsx, .xls",
"Code: 20+ programming languages",
"Archives: .zip, .tar, .tar.gz, .tar.bz2",
"Data: .json, .xml, .csv, .tsv",
"Text: .txt, .md, .log, .ini, .yaml",
"Images: .png, .jpg, .jpeg, .tiff (OCR)"
]
}
@app.get("/metrics")
async def get_metrics():
"""Get detailed performance metrics."""
avg_bytes = metrics["total_bytes"] / max(1, metrics["files_processed"]) if metrics["files_processed"] > 0 else 0
return {
"status": "ok",
"metrics": {
**metrics,
"average_bytes_per_file": round(avg_bytes, 2),
"uptime_seconds": metrics["processing_time"],
"latest_errors": metrics["errors"][-10:] if len(metrics["errors"]) > 10 else metrics["errors"]
}
}
@app.get("/config")
async def get_config():
"""Get current configuration."""
return {
"status": "ok",
"config": {
"MAX_FILE_SIZE_MB": Config.MAX_FILE_SIZE_MB,
"MAX_ZIP_DEPTH": Config.MAX_ZIP_DEPTH,
"MAX_FILES_IN_ZIP": Config.MAX_FILES_IN_ZIP,
"WORKER_THREADS": Config.WORKER_THREADS,
"TIMEOUT_SECONDS": Config.TIMEOUT_SECONDS,
"ENABLE_OCR": Config.ENABLE_OCR,
"TEXTRACT_TIMEOUT": Config.TEXTRACT_TIMEOUT,
"MAX_PDF_PAGES": Config.MAX_PDF_PAGES,
"TESSERACT_LANGUAGE": Config.OCR_LANGUAGE,
"MAX_IMAGE_PIXELS": Config.MAX_IMAGE_PIXELS
}
}
@app.get("/")
async def root():
"""Root endpoint with API information."""
return {
"service": "NeuralStream Production Extractor",
"version": "1.0.0",
"endpoints": {
"ingest": "/api/ingest (POST)",
"single": "/api/single (POST)",
"health": "/health (GET)",
"metrics": "/metrics (GET)",
"config": "/config (GET)",
"docs": "/docs (GET)"
}
}
# ==================== MAIN ====================
if __name__ == "__main__":
import sys
port = int(os.getenv("PORT", 7860))
workers = int(os.getenv("WORKERS", 1))
host = os.getenv("HOST", "0.0.0.0")
logger.info(f"Starting NeuralStream Production Extractor on {host}:{port}")
logger.info(f"Worker processes: {workers}")
logger.info(f"File size limit: {Config.MAX_FILE_SIZE_MB}MB")
logger.info(f"ZIP processing depth: {Config.MAX_ZIP_DEPTH}")
logger.info(f"OCR Enabled: {Config.ENABLE_OCR}")
logger.info(f"OCR Language: {Config.OCR_LANGUAGE}")
logger.info(f"Supported file types: 50+ formats")
if '--dev' in sys.argv:
uvicorn.run("app:app", host="127.0.0.1", port=port, reload=True)
else:
uvicorn.run(
"app:app",
host=host,
port=port,
workers=workers,
log_level="info",
access_log=True,
loop="asyncio"
)