Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
|
| 4 |
+
import torch
|
| 5 |
+
import cv2
|
| 6 |
+
import os
|
| 7 |
+
import base64
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
import time
|
| 10 |
+
|
| 11 |
+
# --- Set up Models ---
|
| 12 |
+
|
| 13 |
+
# Stable Diffusion for image generation
|
| 14 |
+
scheduler = EulerDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="scheduler")
|
| 15 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 16 |
+
"stabilityai/stable-diffusion-2-1",
|
| 17 |
+
scheduler=scheduler,
|
| 18 |
+
torch_dtype=torch.float16
|
| 19 |
+
).to("cuda")
|
| 20 |
+
|
| 21 |
+
# LLaVA for vision-based language understanding
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained("xtuner/llava-llama-3-8b-v1_1-transformers")
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained("xtuner/llava-llama-3-8b-v1_1-transformers").to("cuda")
|
| 24 |
+
|
| 25 |
+
# Open-source language model for text generation (e.g., GPT-Neo)
|
| 26 |
+
gpt_neo_pipe = pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B")
|
| 27 |
+
|
| 28 |
+
# Text-to-Speech
|
| 29 |
+
text_to_speech = pipeline(
|
| 30 |
+
"text-to-speech", model="espnet/fastspeech2_en_ljspeech"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# --- Functions ---
|
| 34 |
+
|
| 35 |
+
def process_image(image_base64, chat_history):
|
| 36 |
+
"""Processes an image, sends it to LLaVA, and generates a response."""
|
| 37 |
+
# Prepare LLaVA input
|
| 38 |
+
input_text = f"""<image> {image_base64} </image>\n\nWhat do you see in this image?"""
|
| 39 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 40 |
+
|
| 41 |
+
# Generate response using LLaVA
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = model(**inputs)
|
| 44 |
+
response = tokenizer.decode(outputs.logits.argmax(-1)[0], skip_special_tokens=True)
|
| 45 |
+
|
| 46 |
+
# Generate speech from the response
|
| 47 |
+
audio = text_to_speech(response)
|
| 48 |
+
audio_path = "generated_audio.wav"
|
| 49 |
+
sf.write(audio_path, audio[0].numpy(), samplerate=22050)
|
| 50 |
+
|
| 51 |
+
# Update chat history
|
| 52 |
+
chat_history += "You: Image\n"
|
| 53 |
+
chat_history += "Model: " + response + "\n"
|
| 54 |
+
|
| 55 |
+
return chat_history, audio_path
|
| 56 |
+
|
| 57 |
+
def generate_image(prompt, chat_history):
|
| 58 |
+
"""Generates an image using Stable Diffusion based on a prompt."""
|
| 59 |
+
image = pipe(
|
| 60 |
+
prompt=prompt,
|
| 61 |
+
guidance_scale=7.5,
|
| 62 |
+
num_inference_steps=50,
|
| 63 |
+
).images[0]
|
| 64 |
+
|
| 65 |
+
# Update chat history
|
| 66 |
+
chat_history += "You: " + prompt + "\n"
|
| 67 |
+
chat_history += "Model: Image\n"
|
| 68 |
+
|
| 69 |
+
return chat_history, image
|
| 70 |
+
|
| 71 |
+
def process_text(text, chat_history):
|
| 72 |
+
"""Processes text, generates a response using GPT-Neo, and generates speech."""
|
| 73 |
+
# Generate response using GPT-Neo
|
| 74 |
+
response = gpt_neo_pipe(
|
| 75 |
+
text,
|
| 76 |
+
max_length=100,
|
| 77 |
+
num_return_sequences=1,
|
| 78 |
+
)[0]["generated_text"]
|
| 79 |
+
|
| 80 |
+
# Generate speech from the response
|
| 81 |
+
audio = text_to_speech(response)
|
| 82 |
+
audio_path = "generated_audio.wav"
|
| 83 |
+
sf.write(audio_path, audio[0].numpy(), samplerate=22050)
|
| 84 |
+
|
| 85 |
+
# Update chat history
|
| 86 |
+
chat_history += "You: " + text + "\n"
|
| 87 |
+
chat_history += "Model: " + response + "\n"
|
| 88 |
+
|
| 89 |
+
return chat_history, audio_path
|
| 90 |
+
|
| 91 |
+
# --- Webcam Capture ---
|
| 92 |
+
|
| 93 |
+
def capture_image():
|
| 94 |
+
"""Captures a screenshot from the webcam."""
|
| 95 |
+
cap = cv2.VideoCapture(0)
|
| 96 |
+
ret, frame = cap.read()
|
| 97 |
+
cap.release()
|
| 98 |
+
image = Image.fromarray(frame)
|
| 99 |
+
image_bytes = image.convert("RGB").save("captured_image.jpg", "JPEG")
|
| 100 |
+
with open("captured_image.jpg", "rb") as f:
|
| 101 |
+
image_base64 = base64.b64encode(f.read()).decode("utf-8")
|
| 102 |
+
return image_base64
|
| 103 |
+
|
| 104 |
+
# --- Gradio Interface ---
|
| 105 |
+
|
| 106 |
+
with gr.Blocks() as demo:
|
| 107 |
+
gr.Markdown("## Llama-LLaVA Vision Speech Assistant")
|
| 108 |
+
chat_history = gr.Textbox(label="Chat History", lines=10, interactive=False)
|
| 109 |
+
webcam_output = gr.Image(label="Webcam Feed", interactive=False)
|
| 110 |
+
image_input = gr.Image(label="Uploaded Image")
|
| 111 |
+
text_input = gr.Textbox(label="Enter Text")
|
| 112 |
+
audio_output = gr.Audio(label="Audio Response")
|
| 113 |
+
|
| 114 |
+
# Screenshot button
|
| 115 |
+
screenshot_button = gr.Button("Capture Screenshot")
|
| 116 |
+
screenshot_button.click(fn=capture_image, outputs=image_input)
|
| 117 |
+
|
| 118 |
+
# Image processing (LLaVA)
|
| 119 |
+
image_input.change(fn=process_image, inputs=[image_input, chat_history], outputs=[chat_history, audio_output])
|
| 120 |
+
|
| 121 |
+
# Text processing (GPT-Neo)
|
| 122 |
+
text_input.submit(fn=process_text, inputs=[text_input, chat_history], outputs=[chat_history, audio_output])
|
| 123 |
+
|
| 124 |
+
# Image generation (Stable Diffusion)
|
| 125 |
+
with gr.Tab("Image Generation"):
|
| 126 |
+
image_prompt = gr.Textbox(label="Enter image prompt:")
|
| 127 |
+
image_generation_output = gr.Image(label="Generated Image")
|
| 128 |
+
generate_image_button = gr.Button("Generate Image")
|
| 129 |
+
generate_image_button.click(
|
| 130 |
+
fn=generate_image, inputs=[image_prompt, chat_history], outputs=[chat_history, image_generation_output]
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# Webcam stream
|
| 134 |
+
with gr.Tab("Webcam"):
|
| 135 |
+
webcam_output = gr.Image(label="Webcam Feed", source="webcam", interactive=False)
|
| 136 |
+
# Update webcam image every second
|
| 137 |
+
def update_webcam():
|
| 138 |
+
cap = cv2.VideoCapture(0)
|
| 139 |
+
while True:
|
| 140 |
+
ret, frame = cap.read()
|
| 141 |
+
if not ret:
|
| 142 |
+
break
|
| 143 |
+
image = Image.fromarray(frame)
|
| 144 |
+
yield image
|
| 145 |
+
time.sleep(1) # Update every second
|
| 146 |
+
|
| 147 |
+
webcam_output.source = update_webcam()
|
| 148 |
+
|
| 149 |
+
demo.launch(share=True)
|