# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, Mxfp4Config from trl import ( ModelConfig, ScriptArguments, SFTConfig, SFTTrainer, TrlParser, get_peft_config, ) def main(script_args, training_args, model_args): # ------------------------ # Load model & tokenizer # ------------------------ quantization_config = Mxfp4Config(dequantize=True) model_kwargs = dict( revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code, attn_implementation=model_args.attn_implementation, torch_dtype=model_args.torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, quantization_config=quantization_config, ) model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, **model_kwargs ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, ) # -------------- # Load dataset # -------------- dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) # ------------- # Train model # ------------- trainer = SFTTrainer( model=model, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, # You had `processing_class` here, but SFTTrainer expects `tokenizer` tokenizer=tokenizer, peft_config=get_peft_config(model_args), ) trainer.train() trainer.save_model(training_args.output_dir) if training_args.push_to_hub: # You had dataset_name here, but it's not a valid argument for push_to_hub in this context. # It will use the hub_model_id from TrainingArguments. trainer.push_to_hub() if __name__ == "__main__": parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) script_args, training_args, model_args, _ = parser.parse_args_and_config( return_remaining_strings=True ) main(script_args, training_args, model_args)