Spaces:
Sleeping
Sleeping
File size: 7,590 Bytes
6d8bed1 a95ab94 6d8bed1 9fe9c9b a95ab94 18ea579 6d8bed1 18ea579 6d8bed1 18ea579 6d8bed1 18ea579 6d8bed1 18ea579 a95ab94 18ea579 a95ab94 18ea579 9fe9c9b 18ea579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import express from 'express';
import multer from 'multer';
import cors from 'cors';
import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-backend-wasm';
import '@tensorflow/tfjs-backend-cpu';
import { createCanvas, loadImage } from 'canvas';
import { createRequire } from 'module';
// Pro importy CommonJS balíčků
const require = createRequire(import.meta.url);
// Import Upscaler using dynamic import
let Upscaler;
const app = express();
const PORT = process.env.PORT || 7860;
// Middleware
app.use(cors());
app.use(express.json({ limit: '50mb' }));
app.use(express.urlencoded({ extended: true, limit: '50mb' }));
// Serve static files from public directory
app.use(express.static('public'));
// Configure multer for file uploads
const upload = multer({
storage: multer.memoryStorage(),
limits: {
fileSize: 10 * 1024 * 1024, // 10MB limit
},
fileFilter: (req, file, cb) => {
if (file.mimetype.startsWith('image/')) {
cb(null, true);
} else {
cb(new Error('Only image files are allowed'), false);
}
}
});
// Global upscaler instance
let upscalerInstance = null;
// Get model for scale and type
async function getModelForScaleAndType(scale, modelType) {
switch (modelType) {
case 'esrgan-slim':
const { x2: slimX2, x3: slimX3, x4: slimX4 } = await import('@upscalerjs/esrgan-slim');
if (scale === 2) return slimX2;
if (scale === 3) return slimX3;
return slimX4;
case 'esrgan-medium':
const { x2: mediumX2, x3: mediumX3, x4: mediumX4 } = await import('@upscalerjs/esrgan-medium');
if (scale === 2) return mediumX2;
if (scale === 3) return mediumX3;
return mediumX4;
case 'esrgan-thick':
const { x2: thickX2, x3: thickX3, x4: thickX4 } = await import('@upscalerjs/esrgan-thick');
if (scale === 2) return thickX2;
if (scale === 3) return thickX3;
return thickX4;
default:
const { x2: defaultX2, x3: defaultX3, x4: defaultX4 } = await import('@upscalerjs/esrgan-slim');
if (scale === 2) return defaultX2;
if (scale === 3) return defaultX3;
return defaultX4;
}
}
// Initialize upscaler with specific model
async function initializeUpscaler(scale = 2, modelType = 'esrgan-slim') {
try {
console.log(`Initializing upscaler with scale ${scale}x and model ${modelType}...`);
if (!Upscaler) {
const upscalerModule = await import('upscaler');
Upscaler = upscalerModule.default;
}
const model = await getModelForScaleAndType(scale, modelType);
upscalerInstance = new Upscaler({ model });
console.log('Upscaler initialized successfully');
return upscalerInstance;
} catch (error) {
console.error('Failed to initialize upscaler:', error);
throw error;
}
}
// Convert buffer to base64 data URL
function bufferToDataURL(buffer, mimeType = 'image/png') {
const base64 = buffer.toString('base64');
return `data:${mimeType};base64,${base64}`;
}
// Health check endpoint
app.get('/', (req, res) => {
res.json({
status: 'ok',
message: 'AI Image Upscaler API',
backend: tf.getBackend(),
version: '1.0.0',
endpoints: {
upscale: 'POST /upscale',
health: 'GET /'
}
});
});
// Main upscale endpoint
app.post('/upscale', upload.single('image'), async (req, res) => {
try {
if (!req.file) {
return res.status(400).json({ error: 'No image file provided' });
}
const { scale = 2, modelType = 'esrgan-slim', patchSize = 128, padding = 8 } = req.body;
// Validate parameters
const validScales = [2, 3, 4];
const validModels = ['esrgan-slim', 'esrgan-medium', 'esrgan-thick'];
if (!validScales.includes(parseInt(scale))) {
return res.status(400).json({ error: 'Invalid scale. Must be 2, 3, or 4' });
}
if (!validModels.includes(modelType)) {
return res.status(400).json({ error: 'Invalid model type' });
}
console.log(`Processing image with scale ${scale}x, model ${modelType}`);
// Initialize upscaler if needed
if (!upscalerInstance) {
await initializeUpscaler(parseInt(scale), modelType);
}
// Convert image buffer to data URL
const inputDataURL = bufferToDataURL(req.file.buffer, req.file.mimetype);
// Perform upscaling
console.log('Starting upscaling...');
const startTime = Date.now();
const result = await upscalerInstance.upscale(inputDataURL, {
output: 'base64',
patchSize: parseInt(patchSize),
padding: parseInt(padding),
awaitNextFrame: true
});
const processingTime = Date.now() - startTime;
console.log(`Upscaling completed in ${processingTime}ms`);
// Return the upscaled image
res.json({
success: true,
result: result,
metadata: {
scale: parseInt(scale),
modelType: modelType,
patchSize: parseInt(patchSize),
padding: parseInt(padding),
processingTime: processingTime,
backend: tf.getBackend()
}
});
} catch (error) {
console.error('Upscaling error:', error);
res.status(500).json({
error: 'Failed to upscale image',
message: error.message,
backend: tf.getBackend()
});
}
});
// Error handling middleware
app.use((error, req, res, next) => {
if (error instanceof multer.MulterError) {
if (error.code === 'LIMIT_FILE_SIZE') {
return res.status(400).json({ error: 'File too large. Maximum size is 10MB' });
}
}
console.error('Unhandled error:', error);
res.status(500).json({ error: 'Internal server error' });
});
// Initialize TensorFlow.js
async function initializeTensorFlow() {
try {
console.log('Initializing TensorFlow.js...');
// Try WASM backend first
try {
await tf.setBackend('wasm');
await tf.ready();
console.log('TensorFlow.js initialized with WASM backend');
console.log('Current backend:', tf.getBackend());
return true;
} catch (wasmError) {
console.warn('WASM backend failed, trying CPU backend:', wasmError.message);
// Fallback to CPU backend
try {
await tf.setBackend('cpu');
await tf.ready();
console.log('TensorFlow.js initialized with CPU backend');
console.log('Current backend:', tf.getBackend());
return true;
} catch (cpuError) {
console.error('Both WASM and CPU backends failed:', cpuError.message);
return false;
}
}
} catch (error) {
console.error('Failed to initialize TensorFlow.js:', error);
return false;
}
}
// Start server
async function startServer() {
try {
// Initialize TensorFlow.js
const tfInitialized = await initializeTensorFlow();
if (!tfInitialized) {
console.error('Failed to initialize TensorFlow.js. Exiting...');
process.exit(1);
}
// Start the server
app.listen(PORT, '0.0.0.0', () => {
console.log(`🚀 Upscaler API server running on port ${PORT}`);
console.log(`📊 TensorFlow.js backend: ${tf.getBackend()}`);
console.log(`🔗 Health check: http://localhost:${PORT}/`);
});
} catch (error) {
console.error('Failed to start server:', error);
process.exit(1);
}
}
// Handle graceful shutdown
process.on('SIGTERM', () => {
console.log('Received SIGTERM, shutting down gracefully...');
if (upscalerInstance) {
try {
upscalerInstance.dispose();
} catch (error) {
console.warn('Error disposing upscaler:', error);
}
}
process.exit(0);
});
// Start the server
startServer();
|