Spaces:
Build error
Build error
| import streamlit as st | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from matplotlib.patches import Polygon, Circle | |
| # Function to calculate the distance between two points | |
| def calculate_distance(x1, y1, x2, y2): | |
| return np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) | |
| # Function to calculate angles using the Law of Cosines | |
| def calculate_angle(a, b, c): | |
| try: | |
| angle = np.degrees(np.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c))) | |
| except ValueError: | |
| angle = 0 # Handle possible domain error in acos | |
| return angle | |
| # Function to calculate area using Heron's formula | |
| def calculate_area(a, b, c): | |
| s = (a + b + c) / 2 | |
| area = np.sqrt(s * (s - a) * (s - b) * (s - c)) | |
| return area | |
| # Function to calculate the perimeter | |
| def calculate_perimeter(a, b, c): | |
| return a + b + c | |
| # Function to calculate the radius of the inscribed circle | |
| def calculate_radius_inscribed_circle(a, b, c): | |
| try: | |
| s = (a + b + c) / 2 | |
| area = calculate_area(a, b, c) | |
| radius = area / s | |
| except ZeroDivisionError: | |
| radius = 0 # Handle case where area or perimeter is zero | |
| return radius | |
| # Function to calculate the radius of the circumscribed circle | |
| def calculate_radius_circumscribed_circle(a, b, c): | |
| try: | |
| area = calculate_area(a, b, c) | |
| radius = (a * b * c) / (4 * area) | |
| except ZeroDivisionError: | |
| radius = 0 # Handle case where area is zero | |
| return radius | |
| # Function to calculate the centroid coordinates | |
| def calculate_centroid(x1, y1, x2, y2, x3, y3): | |
| G_x = (x1 + x2 + x3) / 3 | |
| G_y = (y1 + y2 + y3) / 3 | |
| return G_x, G_y | |
| # Function to calculate the incenter coordinates | |
| def calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c): | |
| try: | |
| I_x = (a * x1 + b * x2 + c * x3) / (a + b + c) | |
| I_y = (a * y1 + b * y2 + c * y3) / (a + b + c) | |
| except ZeroDivisionError: | |
| I_x, I_y = 0, 0 # Handle division by zero if sides sum to zero | |
| return I_x, I_y | |
| # Function to calculate the circumcenter coordinates | |
| def calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c): | |
| try: | |
| D = 2 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) | |
| U_x = ((x1**2 + y1**2) * (y2 - y3) + (x2**2 + y2**2) * (y3 - y1) + (x3**2 + y3**2) * (y1 - y2)) / D | |
| U_y = ((x1**2 + y1**2) * (x3 - x2) + (x2**2 + y2**2) * (x1 - x3) + (x3**2 + y3**2) * (x2 - x1)) / D | |
| except ZeroDivisionError: | |
| U_x, U_y = 0, 0 # Handle division by zero in circumcenter calculation | |
| return U_x, U_y | |
| # Function to calculate midpoints of sides | |
| def calculate_midpoints(x1, y1, x2, y2, x3, y3): | |
| # Midpoint of AB | |
| M1_x = (x1 + x2) / 2 | |
| M1_y = (y1 + y2) / 2 | |
| # Midpoint of BC | |
| M2_x = (x2 + x3) / 2 | |
| M2_y = (y2 + y3) / 2 | |
| # Midpoint of CA | |
| M3_x = (x3 + x1) / 2 | |
| M3_y = (y3 + y1) / 2 | |
| return (M1_x, M1_y), (M2_x, M2_y), (M3_x, M3_y) | |
| # Function to format values close to zero as 0 | |
| def format_zero(val): | |
| if abs(val) < 1e-4: | |
| return 0.0 | |
| return val | |
| # Function to plot the triangle with all points in different colors and a legend | |
| def plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c): | |
| fig, ax = plt.subplots(figsize=(10, 8)) | |
| triangle = Polygon([(x1, y1), (x2, y2), (x3, y3)], closed=True, edgecolor='b', facecolor='lightblue', linewidth=2) | |
| ax.add_patch(triangle) | |
| # Define colors for different points | |
| vertex_color = 'blue' | |
| midpoint_color = 'green' | |
| centroid_color = 'orange' | |
| incenter_color = 'red' | |
| circumcenter_color = 'purple' | |
| # Plot the triangle vertices | |
| vertices = [(x1, y1), (x2, y2), (x3, y3)] | |
| vertex_labels = [f"Vertex A ({x1:.1f}, {y1:.1f})", f"Vertex B ({x2:.1f}, {y2:.1f})", f"Vertex C ({x3:.1f}, {y3:.1f})"] | |
| vertex_name = ["A", "B", "C"] | |
| for i, (vx, vy) in enumerate(vertices): | |
| ax.scatter(vx, vy, color=vertex_color, zorder=3) | |
| ax.text(vx+0.01*G_x, vy+0.02*G_y, vertex_name[i], fontsize=10, ha="left", va="bottom", color=vertex_color) | |
| # Plot key points with their corresponding colors | |
| key_points = [ | |
| (I_x, I_y, incenter_color), | |
| (U_x, U_y, circumcenter_color), | |
| (G_x, G_y, centroid_color) | |
| ] | |
| key_points_labels = [f"Incenter ({I_x:.1f}, {I_y:.1f})", f"Circumcenter ({U_x:.1f}, {U_y:.1f})", f"Centroid ({G_x:.1f}, {G_y:.1f})"] | |
| for x, y, color in key_points: | |
| ax.scatter(x, y, color=color, zorder=5) | |
| # Plot midpoints of sides | |
| midpoints_labels = [f"Mid-Point M1 ({(x1 + x2) / 2:.1f}, {(y1 + y2) / 2:.1f})", | |
| f"Mid-Point M2 ({(x2 + x3) / 2:.1f}, {(y2 + y3) / 2:.1f})", | |
| f"Mid-Point M3 ({(x1 + x3) / 2:.1f}, {(y1 + y3) / 2:.1f})"] | |
| midpoint_name = ["M1", "M2", "M3"] | |
| for i, (mx, my) in enumerate(midpoints): | |
| ax.scatter(mx, my, color=midpoint_color, zorder=3) | |
| ax.text(mx+0.01*G_x, my+0.02*G_y, midpoint_name[i], fontsize=10, ha="left", va="bottom", color=midpoint_color) | |
| # Draw the inscribed circle (incircle) | |
| radius_in = calculate_radius_inscribed_circle(a, b, c) | |
| incircle = Circle((I_x, I_y), radius_in, color=incenter_color, fill=False, linestyle='--', linewidth=1, label="Inscribed Circle") | |
| ax.add_patch(incircle) | |
| # Draw the circumscribed circle (circumcircle) | |
| radius_circum = calculate_radius_circumscribed_circle(a, b, c) | |
| circumcircle = Circle((U_x, U_y), radius_circum, color=circumcenter_color, fill=False, linestyle='--', linewidth=1, label="Circumscribed Circle") | |
| ax.add_patch(circumcircle) | |
| # Calculate area and perimeter of triangle | |
| area = calculate_area(a, b, c) | |
| perimeter = calculate_perimeter(a, b, c) | |
| # Calculate the lengths of the sides of the triangle using Euclidean distance | |
| a = calculate_distance(x2, y2, x3, y3) | |
| b = calculate_distance(x1, y1, x3, y3) | |
| c = calculate_distance(x1, y1, x2, y2) | |
| sides = [f"Side a: {a:.1f}", f"Side b: {b:.1f}", f"Side c: {c:.1f}"] | |
| # Validate if it's a valid triangle | |
| if not is_valid_triangle(a, b, c): | |
| st.error("The entered points do not form a valid triangle.") | |
| return | |
| # Calculate angles using the Law of Cosines | |
| A = calculate_angle(a, b, c) | |
| B = calculate_angle(b, a, c) | |
| C = calculate_angle(c, a, b) | |
| vertex_angles = [f"A: {A:.1f}°", f"B: {B:.1f}°", f"C: {C:.1f}°"] | |
| # Check if angles sum up to 180 degrees | |
| if abs(A + B + C - 180) > 1e-2: | |
| st.error("The sum of the angles is not 180 degrees.") | |
| return | |
| # Add legend | |
| handles = [ | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_labels[0]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_labels[1]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_labels[2]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=7, label=midpoints_labels[0]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=7, label=midpoints_labels[1]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=7, label=midpoints_labels[2]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_angles[0]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_angles[1]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_angles[2]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=incenter_color, markersize=7, label=key_points_labels[0]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=circumcenter_color, markersize=7, label=key_points_labels[1]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=centroid_color, markersize=7, label=key_points_labels[2]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="blue", markersize=7, label=sides[0]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="blue", markersize=7, label=sides[1]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="blue", markersize=7, label=sides[2]), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="lightblue", markersize=7, label=f"Area: {area:.1f}"), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="blue", markersize=7, label=f"Perimeter: {perimeter:.1f}"), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=incenter_color, markersize=7, label=f"Incircle radius: {radius_in:.1f}"), | |
| plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=circumcenter_color, markersize=7, label=f"Circumcircle radius: {radius_circum:.1f}") | |
| ] | |
| ax.legend(handles=handles, loc='upper left', fontsize=8) | |
| # Adjust the plot limits and aspect ratio | |
| padding = 5 | |
| ax.set_xlim([min(x1, x2, x3) - padding, max(x1, x2, x3) + padding]) | |
| ax.set_ylim([min(y1, y2, y3) - padding, max(y1, y2, y3) + padding]) | |
| ax.set_aspect('equal', adjustable='datalim') | |
| ax.set_title('Triangle Visualization', fontsize=23) | |
| ax.set_xlabel('X-axis', fontsize=12) | |
| ax.set_ylabel('Y-axis', fontsize=12) | |
| # Add a light grid | |
| plt.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.5) | |
| st.pyplot(fig) | |
| # Function to check if the sides form a valid triangle | |
| def is_valid_triangle(a, b, c): | |
| # Check if the sum of two sides is greater than the third side (Triangle Inequality Theorem) | |
| return a + b > c and b + c > a and c + a > b | |
| # Main function to interact with the user | |
| def main(): | |
| st.markdown(""" | |
| <h1 style='text-align: left;'> | |
| <span style="display: inline-block; transform: scaleX(-1);">◭</span> Advanced Triangle Solver ◭ | |
| </h1> """, unsafe_allow_html=True) | |
| st.sidebar.header("Enter the cartesian coordinates for the three points of a triangle:") | |
| # # Coordinates input (X1, Y1), (X2, Y2), (X3, Y3) | |
| # x1 = st.sidebar.number_input("X1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| # y1 = st.sidebar.number_input("Y1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| # x2 = st.sidebar.number_input("X2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| # y2 = st.sidebar.number_input("Y2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| # x3 = st.sidebar.number_input("X3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| # y3 = st.sidebar.number_input("Y3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| # Coordinates input (X1, Y1), (X2, Y2), (X3, Y3) | |
| col_x1y1 = st.sidebar.columns([3, 3]) # Wider columns for sliders | |
| x1 = col_x1y1[0].number_input("X1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| y1 = col_x1y1[1].number_input("Y1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| # # Reduced spacing between sections | |
| # st.sidebar.markdown("<br>", unsafe_allow_html=True) | |
| col_x2y2 = st.sidebar.columns([3, 3]) # Wider columns for sliders | |
| x2 = col_x2y2[0].number_input("X2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| y2 = col_x2y2[1].number_input("Y2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| # # Reduced spacing between sections | |
| # st.sidebar.markdown("<br>", unsafe_allow_html=True) | |
| col_x3y3 = st.sidebar.columns([3, 3]) # Wider columns for sliders | |
| x3 = col_x3y3[0].number_input("X3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| y3 = col_x3y3[1].number_input("Y3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f") | |
| # Add extra vertical spacing below the inputs | |
| st.sidebar.markdown("<br>", unsafe_allow_html=True) | |
| # Add "Solve Triangle" button centered in a new row | |
| button_col = st.sidebar.columns([1, 2, 1]) # Center button using column proportions | |
| if button_col[1].button("Solve Triangle"): | |
| # Calculate the lengths of the sides of the triangle using Euclidean distance | |
| a = calculate_distance(x2, y2, x3, y3) | |
| b = calculate_distance(x1, y1, x3, y3) | |
| c = calculate_distance(x1, y1, x2, y2) | |
| # Validate if it's a valid triangle | |
| if not is_valid_triangle(a, b, c): | |
| st.error("The entered points do not form a valid triangle.") | |
| return | |
| # Calculate angles using the Law of Cosines | |
| A = calculate_angle(a, b, c) | |
| B = calculate_angle(b, a, c) | |
| C = calculate_angle(c, a, b) | |
| # Check if angles sum up to 180 degrees | |
| if abs(A + B + C - 180) > 1e-2: | |
| st.error("The sum of the angles is not 180 degrees.") | |
| return | |
| # Calculate area, perimeter, and radius of inscribed and circumscribed circles | |
| area = calculate_area(a, b, c) | |
| perimeter = calculate_perimeter(a, b, c) | |
| radius_in = calculate_radius_inscribed_circle(a, b, c) | |
| radius_circum = calculate_radius_circumscribed_circle(a, b, c) | |
| # Calculate centroid, incenter, and circumcenter coordinates | |
| G_x, G_y = calculate_centroid(x1, y1, x2, y2, x3, y3) | |
| I_x, I_y = calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c) | |
| U_x, U_y = calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c) | |
| # Calculate midpoints of the sides | |
| midpoints = calculate_midpoints(x1, y1, x2, y2, x3, y3) | |
| # Display results in columns | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.subheader("Coordinates of Triangle:") | |
| st.markdown(f"Vertex A: **({x1:.3f}, {y1:.3f})**") | |
| st.markdown(f"Vertex B: **({x2:.3f}, {y2:.3f})**") | |
| st.markdown(f"Vertex C: **({x3:.3f}, {y3:.3f})**") | |
| with col2: | |
| st.subheader("Mid-Points of Triangle:") | |
| st.markdown(f"Midpoint of AB: **({midpoints[0][0]:.3f}, {midpoints[0][1]:.3f})**") | |
| st.markdown(f"Midpoint of BC: **({midpoints[1][0]:.3f}, {midpoints[1][1]:.3f})**") | |
| st.markdown(f"Midpoint of CA: **({midpoints[2][0]:.3f}, {midpoints[2][1]:.3f})**") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.subheader("Angles of Triangle:") | |
| st.markdown(f"Angle A: **{format_zero(A):.3f}°**") | |
| st.markdown(f"Angle B: **{format_zero(B):.3f}°**") | |
| st.markdown(f"Angle C: **{format_zero(C):.3f}°**") | |
| with col2: | |
| st.subheader("Sides of Triangle:") | |
| st.markdown(f"Side a: **{format_zero(a):.3f}** units") | |
| st.markdown(f"Side b: **{format_zero(b):.3f}** units") | |
| st.markdown(f"Side c: **{format_zero(c):.3f}** units") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.subheader("Incenter of Triangle:") | |
| st.markdown(f"Coordinates: **({format_zero(I_x):.3f}, {format_zero(I_y):.3f})**") | |
| st.markdown(f"Radius: **{radius_in:.3f}** units") | |
| with col2: | |
| st.subheader("Circumcenter of Triangle:") | |
| st.markdown(f"Coordinates: **({format_zero(U_x):.3f}, {format_zero(U_y):.3f})**") | |
| st.markdown(f"Radius: **{radius_circum:.3f}** units") | |
| col1, col2, col3 = st.columns([1, 2, 1]) # Create three columns with relative widths | |
| with col2: # Center column | |
| st.subheader("Other Properties:") | |
| st.markdown(f"Area: **{format_zero(area):.3f}** square units") | |
| st.markdown(f"Perimeter: **{format_zero(perimeter):.3f}** units") | |
| st.markdown(f"Centroid: **({format_zero(G_x):.3f}, {format_zero(G_y):.3f})**") | |
| # Display triangle graph with midpoints and colored points | |
| plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c) | |
| if __name__ == "__main__": | |
| main() | |