Shakeel1979's picture
Update app.py
51f5ca0 verified
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon, Circle
# Function to calculate the distance between two points
def calculate_distance(x1, y1, x2, y2):
return np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
# Function to calculate angles using the Law of Cosines
def calculate_angle(a, b, c):
try:
angle = np.degrees(np.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)))
except ValueError:
angle = 0 # Handle possible domain error in acos
return angle
# Function to calculate area using Heron's formula
def calculate_area(a, b, c):
s = (a + b + c) / 2
area = np.sqrt(s * (s - a) * (s - b) * (s - c))
return area
# Function to calculate the perimeter
def calculate_perimeter(a, b, c):
return a + b + c
# Function to calculate the radius of the inscribed circle
def calculate_radius_inscribed_circle(a, b, c):
try:
s = (a + b + c) / 2
area = calculate_area(a, b, c)
radius = area / s
except ZeroDivisionError:
radius = 0 # Handle case where area or perimeter is zero
return radius
# Function to calculate the radius of the circumscribed circle
def calculate_radius_circumscribed_circle(a, b, c):
try:
area = calculate_area(a, b, c)
radius = (a * b * c) / (4 * area)
except ZeroDivisionError:
radius = 0 # Handle case where area is zero
return radius
# Function to calculate the centroid coordinates
def calculate_centroid(x1, y1, x2, y2, x3, y3):
G_x = (x1 + x2 + x3) / 3
G_y = (y1 + y2 + y3) / 3
return G_x, G_y
# Function to calculate the incenter coordinates
def calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c):
try:
I_x = (a * x1 + b * x2 + c * x3) / (a + b + c)
I_y = (a * y1 + b * y2 + c * y3) / (a + b + c)
except ZeroDivisionError:
I_x, I_y = 0, 0 # Handle division by zero if sides sum to zero
return I_x, I_y
# Function to calculate the circumcenter coordinates
def calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c):
try:
D = 2 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2))
U_x = ((x1**2 + y1**2) * (y2 - y3) + (x2**2 + y2**2) * (y3 - y1) + (x3**2 + y3**2) * (y1 - y2)) / D
U_y = ((x1**2 + y1**2) * (x3 - x2) + (x2**2 + y2**2) * (x1 - x3) + (x3**2 + y3**2) * (x2 - x1)) / D
except ZeroDivisionError:
U_x, U_y = 0, 0 # Handle division by zero in circumcenter calculation
return U_x, U_y
# Function to calculate midpoints of sides
def calculate_midpoints(x1, y1, x2, y2, x3, y3):
# Midpoint of AB
M1_x = (x1 + x2) / 2
M1_y = (y1 + y2) / 2
# Midpoint of BC
M2_x = (x2 + x3) / 2
M2_y = (y2 + y3) / 2
# Midpoint of CA
M3_x = (x3 + x1) / 2
M3_y = (y3 + y1) / 2
return (M1_x, M1_y), (M2_x, M2_y), (M3_x, M3_y)
# Function to format values close to zero as 0
def format_zero(val):
if abs(val) < 1e-4:
return 0.0
return val
# Function to plot the triangle with all points in different colors and a legend
def plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c):
fig, ax = plt.subplots(figsize=(10, 8))
triangle = Polygon([(x1, y1), (x2, y2), (x3, y3)], closed=True, edgecolor='b', facecolor='lightblue', linewidth=2)
ax.add_patch(triangle)
# Define colors for different points
vertex_color = 'blue'
midpoint_color = 'green'
centroid_color = 'orange'
incenter_color = 'red'
circumcenter_color = 'purple'
# Plot the triangle vertices
vertices = [(x1, y1), (x2, y2), (x3, y3)]
vertex_labels = [f"Vertex A ({x1:.1f}, {y1:.1f})", f"Vertex B ({x2:.1f}, {y2:.1f})", f"Vertex C ({x3:.1f}, {y3:.1f})"]
vertex_name = ["A", "B", "C"]
for i, (vx, vy) in enumerate(vertices):
ax.scatter(vx, vy, color=vertex_color, zorder=3)
ax.text(vx+0.01*G_x, vy+0.02*G_y, vertex_name[i], fontsize=10, ha="left", va="bottom", color=vertex_color)
# Plot key points with their corresponding colors
key_points = [
(I_x, I_y, incenter_color),
(U_x, U_y, circumcenter_color),
(G_x, G_y, centroid_color)
]
key_points_labels = [f"Incenter ({I_x:.1f}, {I_y:.1f})", f"Circumcenter ({U_x:.1f}, {U_y:.1f})", f"Centroid ({G_x:.1f}, {G_y:.1f})"]
for x, y, color in key_points:
ax.scatter(x, y, color=color, zorder=5)
# Plot midpoints of sides
midpoints_labels = [f"Mid-Point M1 ({(x1 + x2) / 2:.1f}, {(y1 + y2) / 2:.1f})",
f"Mid-Point M2 ({(x2 + x3) / 2:.1f}, {(y2 + y3) / 2:.1f})",
f"Mid-Point M3 ({(x1 + x3) / 2:.1f}, {(y1 + y3) / 2:.1f})"]
midpoint_name = ["M1", "M2", "M3"]
for i, (mx, my) in enumerate(midpoints):
ax.scatter(mx, my, color=midpoint_color, zorder=3)
ax.text(mx+0.01*G_x, my+0.02*G_y, midpoint_name[i], fontsize=10, ha="left", va="bottom", color=midpoint_color)
# Draw the inscribed circle (incircle)
radius_in = calculate_radius_inscribed_circle(a, b, c)
incircle = Circle((I_x, I_y), radius_in, color=incenter_color, fill=False, linestyle='--', linewidth=1, label="Inscribed Circle")
ax.add_patch(incircle)
# Draw the circumscribed circle (circumcircle)
radius_circum = calculate_radius_circumscribed_circle(a, b, c)
circumcircle = Circle((U_x, U_y), radius_circum, color=circumcenter_color, fill=False, linestyle='--', linewidth=1, label="Circumscribed Circle")
ax.add_patch(circumcircle)
# Calculate area and perimeter of triangle
area = calculate_area(a, b, c)
perimeter = calculate_perimeter(a, b, c)
# Calculate the lengths of the sides of the triangle using Euclidean distance
a = calculate_distance(x2, y2, x3, y3)
b = calculate_distance(x1, y1, x3, y3)
c = calculate_distance(x1, y1, x2, y2)
sides = [f"Side a: {a:.1f}", f"Side b: {b:.1f}", f"Side c: {c:.1f}"]
# Validate if it's a valid triangle
if not is_valid_triangle(a, b, c):
st.error("The entered points do not form a valid triangle.")
return
# Calculate angles using the Law of Cosines
A = calculate_angle(a, b, c)
B = calculate_angle(b, a, c)
C = calculate_angle(c, a, b)
vertex_angles = [f"A: {A:.1f}°", f"B: {B:.1f}°", f"C: {C:.1f}°"]
# Check if angles sum up to 180 degrees
if abs(A + B + C - 180) > 1e-2:
st.error("The sum of the angles is not 180 degrees.")
return
# Add legend
handles = [
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_labels[0]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_labels[1]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_labels[2]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=7, label=midpoints_labels[0]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=7, label=midpoints_labels[1]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=midpoint_color, markersize=7, label=midpoints_labels[2]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_angles[0]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_angles[1]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=vertex_color, markersize=7, label=vertex_angles[2]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=incenter_color, markersize=7, label=key_points_labels[0]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=circumcenter_color, markersize=7, label=key_points_labels[1]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=centroid_color, markersize=7, label=key_points_labels[2]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="blue", markersize=7, label=sides[0]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="blue", markersize=7, label=sides[1]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="blue", markersize=7, label=sides[2]),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="lightblue", markersize=7, label=f"Area: {area:.1f}"),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor="blue", markersize=7, label=f"Perimeter: {perimeter:.1f}"),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=incenter_color, markersize=7, label=f"Incircle radius: {radius_in:.1f}"),
plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=circumcenter_color, markersize=7, label=f"Circumcircle radius: {radius_circum:.1f}")
]
ax.legend(handles=handles, loc='upper left', fontsize=8)
# Adjust the plot limits and aspect ratio
padding = 5
ax.set_xlim([min(x1, x2, x3) - padding, max(x1, x2, x3) + padding])
ax.set_ylim([min(y1, y2, y3) - padding, max(y1, y2, y3) + padding])
ax.set_aspect('equal', adjustable='datalim')
ax.set_title('Triangle Visualization', fontsize=23)
ax.set_xlabel('X-axis', fontsize=12)
ax.set_ylabel('Y-axis', fontsize=12)
# Add a light grid
plt.grid(color='gray', linestyle='--', linewidth=0.5, alpha=0.5)
st.pyplot(fig)
# Function to check if the sides form a valid triangle
def is_valid_triangle(a, b, c):
# Check if the sum of two sides is greater than the third side (Triangle Inequality Theorem)
return a + b > c and b + c > a and c + a > b
# Main function to interact with the user
def main():
st.markdown("""
<h1 style='text-align: left;'>
<span style="display: inline-block; transform: scaleX(-1);">◭</span> Advanced Triangle Solver ◭
</h1> """, unsafe_allow_html=True)
st.sidebar.header("Enter the cartesian coordinates for the three points of a triangle:")
# # Coordinates input (X1, Y1), (X2, Y2), (X3, Y3)
# x1 = st.sidebar.number_input("X1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
# y1 = st.sidebar.number_input("Y1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
# x2 = st.sidebar.number_input("X2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
# y2 = st.sidebar.number_input("Y2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
# x3 = st.sidebar.number_input("X3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
# y3 = st.sidebar.number_input("Y3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
# Coordinates input (X1, Y1), (X2, Y2), (X3, Y3)
col_x1y1 = st.sidebar.columns([3, 3]) # Wider columns for sliders
x1 = col_x1y1[0].number_input("X1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
y1 = col_x1y1[1].number_input("Y1", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
# # Reduced spacing between sections
# st.sidebar.markdown("<br>", unsafe_allow_html=True)
col_x2y2 = st.sidebar.columns([3, 3]) # Wider columns for sliders
x2 = col_x2y2[0].number_input("X2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
y2 = col_x2y2[1].number_input("Y2", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
# # Reduced spacing between sections
# st.sidebar.markdown("<br>", unsafe_allow_html=True)
col_x3y3 = st.sidebar.columns([3, 3]) # Wider columns for sliders
x3 = col_x3y3[0].number_input("X3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
y3 = col_x3y3[1].number_input("Y3", min_value=-100.0, max_value=100.0, step=0.1, format="%.3f")
# Add extra vertical spacing below the inputs
st.sidebar.markdown("<br>", unsafe_allow_html=True)
# Add "Solve Triangle" button centered in a new row
button_col = st.sidebar.columns([1, 2, 1]) # Center button using column proportions
if button_col[1].button("Solve Triangle"):
# Calculate the lengths of the sides of the triangle using Euclidean distance
a = calculate_distance(x2, y2, x3, y3)
b = calculate_distance(x1, y1, x3, y3)
c = calculate_distance(x1, y1, x2, y2)
# Validate if it's a valid triangle
if not is_valid_triangle(a, b, c):
st.error("The entered points do not form a valid triangle.")
return
# Calculate angles using the Law of Cosines
A = calculate_angle(a, b, c)
B = calculate_angle(b, a, c)
C = calculate_angle(c, a, b)
# Check if angles sum up to 180 degrees
if abs(A + B + C - 180) > 1e-2:
st.error("The sum of the angles is not 180 degrees.")
return
# Calculate area, perimeter, and radius of inscribed and circumscribed circles
area = calculate_area(a, b, c)
perimeter = calculate_perimeter(a, b, c)
radius_in = calculate_radius_inscribed_circle(a, b, c)
radius_circum = calculate_radius_circumscribed_circle(a, b, c)
# Calculate centroid, incenter, and circumcenter coordinates
G_x, G_y = calculate_centroid(x1, y1, x2, y2, x3, y3)
I_x, I_y = calculate_incenter(x1, y1, x2, y2, x3, y3, a, b, c)
U_x, U_y = calculate_circumcenter(x1, y1, x2, y2, x3, y3, a, b, c)
# Calculate midpoints of the sides
midpoints = calculate_midpoints(x1, y1, x2, y2, x3, y3)
# Display results in columns
col1, col2 = st.columns(2)
with col1:
st.subheader("Coordinates of Triangle:")
st.markdown(f"Vertex A: **({x1:.3f}, {y1:.3f})**")
st.markdown(f"Vertex B: **({x2:.3f}, {y2:.3f})**")
st.markdown(f"Vertex C: **({x3:.3f}, {y3:.3f})**")
with col2:
st.subheader("Mid-Points of Triangle:")
st.markdown(f"Midpoint of AB: **({midpoints[0][0]:.3f}, {midpoints[0][1]:.3f})**")
st.markdown(f"Midpoint of BC: **({midpoints[1][0]:.3f}, {midpoints[1][1]:.3f})**")
st.markdown(f"Midpoint of CA: **({midpoints[2][0]:.3f}, {midpoints[2][1]:.3f})**")
col1, col2 = st.columns(2)
with col1:
st.subheader("Angles of Triangle:")
st.markdown(f"Angle A: **{format_zero(A):.3f}°**")
st.markdown(f"Angle B: **{format_zero(B):.3f}°**")
st.markdown(f"Angle C: **{format_zero(C):.3f}°**")
with col2:
st.subheader("Sides of Triangle:")
st.markdown(f"Side a: **{format_zero(a):.3f}** units")
st.markdown(f"Side b: **{format_zero(b):.3f}** units")
st.markdown(f"Side c: **{format_zero(c):.3f}** units")
col1, col2 = st.columns(2)
with col1:
st.subheader("Incenter of Triangle:")
st.markdown(f"Coordinates: **({format_zero(I_x):.3f}, {format_zero(I_y):.3f})**")
st.markdown(f"Radius: **{radius_in:.3f}** units")
with col2:
st.subheader("Circumcenter of Triangle:")
st.markdown(f"Coordinates: **({format_zero(U_x):.3f}, {format_zero(U_y):.3f})**")
st.markdown(f"Radius: **{radius_circum:.3f}** units")
col1, col2, col3 = st.columns([1, 2, 1]) # Create three columns with relative widths
with col2: # Center column
st.subheader("Other Properties:")
st.markdown(f"Area: **{format_zero(area):.3f}** square units")
st.markdown(f"Perimeter: **{format_zero(perimeter):.3f}** units")
st.markdown(f"Centroid: **({format_zero(G_x):.3f}, {format_zero(G_y):.3f})**")
# Display triangle graph with midpoints and colored points
plot_triangle(x1, y1, x2, y2, x3, y3, I_x, I_y, U_x, U_y, G_x, G_y, midpoints, a, b, c)
if __name__ == "__main__":
main()