import gradio as gr import onnxruntime as ort from PIL import Image import numpy as np # Load the YOLOv8 ONNX model session = ort.InferenceSession("yolov8n.pt") def predict(image): # Preprocess the image img = np.array(image).astype(np.float32) img = np.expand_dims(img, axis=0) # Run inference outputs = session.run(None, {"images": img})[0] return outputs # Modify to return detections interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs="label" ) interface.launch()