File size: 4,279 Bytes
3b40f46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from .common import *

_norm = bn


# _norm = pixelnorm


def norm(channels):
    return _norm(channels)


def skip(
    num_input_channels=2,
    num_output_channels=3,
    num_channels_down=[16, 32, 64, 128, 128],
    num_channels_up=[16, 32, 64, 128, 128],
    num_channels_skip=[4, 4, 4, 4, 4],
    filter_size_down=3,
    filter_size_up=3,
    filter_skip_size=1,
    need_sigmoid=True,
    need_tanh=False,
    need_bias=True,
    pad="reflection",
    upsample_mode="bilinear",
    downsample_mode="stride",
    act_fun="LeakyReLU",
    need1x1_up=True,
    decorr_rgb=True,
):
    """Assembles encoder-decoder with skip connections.

    Arguments:
        act_fun: Either string 'LeakyReLU|Swish|ELU|none' or module (e.g. nn.ReLU)
        pad (string): zero|reflection (default: 'zero')
        upsample_mode (string): 'nearest|bilinear' (default: 'nearest')
        downsample_mode (string): 'stride|avg|max|lanczos2' (default: 'stride')

    """
    assert len(num_channels_down) == len(num_channels_up) == len(num_channels_skip)

    n_scales = len(num_channels_down)

    if not (isinstance(upsample_mode, list) or isinstance(upsample_mode, tuple)):
        upsample_mode = [upsample_mode] * n_scales

    if not (isinstance(downsample_mode, list) or isinstance(downsample_mode, tuple)):
        downsample_mode = [downsample_mode] * n_scales

    if not (isinstance(filter_size_down, list) or isinstance(filter_size_down, tuple)):
        filter_size_down = [filter_size_down] * n_scales

    if not (isinstance(filter_size_up, list) or isinstance(filter_size_up, tuple)):
        filter_size_up = [filter_size_up] * n_scales

    last_scale = n_scales - 1

    cur_depth = None

    model = nn.Sequential()
    # model.add(transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]))
    model_tmp = model

    input_depth = num_input_channels
    for i in range(len(num_channels_down)):

        deeper = nn.Sequential()
        skip = nn.Sequential()

        if num_channels_skip[i] != 0:
            model_tmp.add(Concat(1, skip, deeper))
        else:
            model_tmp.add(deeper)

        model_tmp.add(norm(num_channels_skip[i] + (num_channels_up[i + 1] if i < last_scale else num_channels_down[i])))

        if num_channels_skip[i] != 0:
            skip.add(conv(input_depth, num_channels_skip[i], filter_skip_size, bias=need_bias, pad=pad))
            skip.add(norm(num_channels_skip[i]))
            skip.add(act(act_fun))

        # skip.add(Concat(2, GenNoise(nums_noise[i]), skip_part))

        deeper.add(
            conv(
                input_depth,
                num_channels_down[i],
                filter_size_down[i],
                2,
                bias=need_bias,
                pad=pad,
                downsample_mode=downsample_mode[i],
            )
        )
        deeper.add(norm(num_channels_down[i]))
        deeper.add(act(act_fun))

        deeper.add(conv(num_channels_down[i], num_channels_down[i], filter_size_down[i], bias=need_bias, pad=pad))
        deeper.add(norm(num_channels_down[i]))
        deeper.add(act(act_fun))

        deeper_main = nn.Sequential()

        if i == len(num_channels_down) - 1:
            # The deepest
            k = num_channels_down[i]
        else:
            deeper.add(deeper_main)
            k = num_channels_up[i + 1]

        deeper.add(nn.Upsample(scale_factor=2, mode=upsample_mode[i]))

        model_tmp.add(conv(num_channels_skip[i] + k, num_channels_up[i], filter_size_up[i], 1, bias=need_bias, pad=pad))
        # if i > 0:
        #     model_tmp.add(norm(num_channels_up[i]))
        model_tmp.add(norm(num_channels_up[i]))

        model_tmp.add(act(act_fun))

        if need1x1_up:
            model_tmp.add(conv(num_channels_up[i], num_channels_up[i], 1, bias=need_bias, pad=pad))
            if i > 0:
                model_tmp.add(norm(num_channels_up[i]))
            model_tmp.add(act(act_fun))

        input_depth = num_channels_down[i]
        model_tmp = deeper_main

    model.add(conv(num_channels_up[0], num_output_channels, 1, bias=need_bias, pad=pad))
    if decorr_rgb:
        model.add(DecorrelatedColorsToRGB())
    if need_sigmoid:
        model.add(nn.Sigmoid())
    elif need_tanh:
        model.add(nn.Tanh())

    return model