Spaces:
Sleeping
Sleeping
| from fastapi import APIRouter | |
| from datetime import datetime | |
| from datasets import load_dataset | |
| from sklearn.metrics import accuracy_score | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, ModernBertConfig | |
| from torch.utils.data import DataLoader | |
| from transformers import DataCollatorWithPadding | |
| from .utils.evaluation import TextEvaluationRequest | |
| from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
| router = APIRouter() | |
| DESCRIPTION = "Climate Guard Toxic Agent is a ModernBERT for Climate Disinformation Detection" | |
| ROUTE = "/text" | |
| async def evaluate_text(request: TextEvaluationRequest): | |
| """ | |
| Evaluate text classification for climate disinformation detection using ModernBERT. | |
| """ | |
| # Get space info | |
| username, space_url = get_space_info() | |
| # Define the label mapping | |
| LABEL_MAPPING = { | |
| "0_not_relevant": 0, | |
| "1_not_happening": 1, | |
| "2_not_human": 2, | |
| "3_not_bad": 3, | |
| "4_solutions_harmful_unnecessary": 4, | |
| "5_science_unreliable": 5, | |
| "6_proponents_biased": 6, | |
| "7_fossil_fuels_needed": 7 | |
| } | |
| # Load and prepare the dataset | |
| dataset = load_dataset(request.dataset_name) | |
| # Convert string labels to integers | |
| dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
| # Get test dataset | |
| test_dataset = dataset["test"] | |
| # Start tracking emissions | |
| tracker.start() | |
| tracker.start_task("inference") | |
| #-------------------------------------------------------------------------------------------- | |
| # MODEL INFERENCE CODE | |
| #-------------------------------------------------------------------------------------------- | |
| try: | |
| # Set device | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Model and tokenizer paths | |
| model_name = "Tonic/climate-guard-toxic-agent" | |
| tokenizer_name = "Tonic/climate-guard-toxic-agent" | |
| # Create config | |
| config = ModernBertConfig( | |
| vocab_size=50368, | |
| hidden_size=768, | |
| num_hidden_layers=22, | |
| num_attention_heads=12, | |
| intermediate_size=1152, | |
| max_position_embeddings=8192, | |
| layer_norm_eps=1e-5, | |
| position_embedding_type="absolute", | |
| pad_token_id=50283, | |
| bos_token_id=50281, | |
| eos_token_id=50282, | |
| sep_token_id=50282, | |
| cls_token_id=50281, | |
| hidden_activation="gelu", | |
| classifier_activation="gelu", | |
| classifier_pooling="mean", | |
| num_labels=8, | |
| id2label={str(i): label for i, label in enumerate(LABEL_MAPPING.keys())}, | |
| label2id=LABEL_MAPPING, | |
| problem_type="single_label_classification", | |
| architectures=["ModernBertForSequenceClassification"], | |
| model_type="modernbert" | |
| ) | |
| # Load tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
| # Load model | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| model_name, | |
| config=config, | |
| trust_remote_code=True, | |
| ignore_mismatched_sizes=True, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
| ).to(device) | |
| # Set model to evaluation mode | |
| model.eval() | |
| # Preprocess function | |
| def preprocess_function(examples): | |
| return tokenizer( | |
| examples["quote"], | |
| padding=False, | |
| truncation=True, | |
| max_length=512, | |
| return_tensors=None | |
| ) | |
| # Tokenize dataset | |
| tokenized_test = test_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| remove_columns=test_dataset.column_names | |
| ) | |
| # Set format for pytorch | |
| tokenized_test.set_format("torch") | |
| # Create DataLoader | |
| data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
| test_loader = DataLoader( | |
| tokenized_test, | |
| batch_size=16, | |
| collate_fn=data_collator, | |
| shuffle=False | |
| ) | |
| # Get predictions | |
| predictions = [] | |
| with torch.no_grad(): | |
| for batch in test_loader: | |
| batch = {k: v.to(device) for k, v in batch.items()} | |
| outputs = model(**batch) | |
| preds = torch.argmax(outputs.logits, dim=-1) | |
| predictions.extend(preds.cpu().numpy().tolist()) | |
| # Clean up GPU memory | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| except Exception as e: | |
| print(f"Error during model inference: {str(e)}") | |
| raise | |
| #-------------------------------------------------------------------------------------------- | |
| # MODEL INFERENCE ENDS HERE | |
| #-------------------------------------------------------------------------------------------- | |
| # Stop tracking emissions | |
| emissions_data = tracker.stop_task() | |
| # Calculate accuracy | |
| accuracy = accuracy_score(test_dataset["label"], predictions) | |
| # Prepare results dictionary | |
| results = { | |
| "username": username, | |
| "space_url": space_url, | |
| "submission_timestamp": datetime.now().isoformat(), | |
| "model_description": DESCRIPTION, | |
| "accuracy": float(accuracy), | |
| "energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
| "emissions_gco2eq": emissions_data.emissions * 1000, | |
| "emissions_data": clean_emissions_data(emissions_data), | |
| "api_route": ROUTE, | |
| "dataset_config": { | |
| "dataset_name": request.dataset_name, | |
| "test_size": request.test_size, | |
| "test_seed": request.test_seed | |
| } | |
| } | |
| return results |