Spaces:
Build error
Build error
| import gradio as gr | |
| import spaces # Import spaces module for ZeroGPU | |
| from huggingface_hub import login | |
| import os | |
| from json_processor import JsonProcessor | |
| import json | |
| # 1) Read Secrets | |
| hf_token = os.getenv("HUGGINGFACE_TOKEN") | |
| if not hf_token: | |
| raise RuntimeError("β HUGGINGFACE_TOKEN not detected, please check Space Settings β Secrets") | |
| # 2) Login to ensure all subsequent from_pretrained calls have proper permissions | |
| login(hf_token) | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
| from peft import PeftModel | |
| import warnings | |
| import os | |
| warnings.filterwarnings("ignore") | |
| # Model configuration | |
| MODEL_NAME = "meta-llama/Llama-3.1-8B" | |
| LORA_MODEL = "YongdongWang/llama3.1-8b-lora-qlora-dart-llm" | |
| # Global variables to store model and tokenizer | |
| model = None | |
| tokenizer = None | |
| model_loaded = False | |
| def load_model_and_tokenizer(): | |
| """Load tokenizer - executed on CPU""" | |
| global tokenizer, model_loaded | |
| if model_loaded: | |
| return | |
| print("π Loading tokenizer...") | |
| # Load tokenizer (on CPU) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| MODEL_NAME, | |
| use_fast=False, | |
| trust_remote_code=True | |
| ) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| model_loaded = True | |
| print("β Tokenizer loaded successfully!") | |
| # Request GPU for loading model at startup | |
| def load_model_on_gpu(): | |
| """Load model on GPU""" | |
| global model | |
| if model is not None: | |
| return model | |
| print("π Loading model on GPU...") | |
| try: | |
| # 4-bit quantization configuration | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.float16, | |
| bnb_4bit_use_double_quant=True, | |
| ) | |
| # Load base model | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| quantization_config=bnb_config, | |
| device_map="auto", | |
| torch_dtype=torch.float16, | |
| trust_remote_code=True, | |
| low_cpu_mem_usage=True, | |
| use_safetensors=True | |
| ) | |
| # Load LoRA adapter | |
| model = PeftModel.from_pretrained( | |
| base_model, | |
| LORA_MODEL, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True | |
| ) | |
| model.eval() | |
| print("β Model loaded on GPU successfully!") | |
| return model | |
| except Exception as load_error: | |
| print(f"β Model loading failed: {load_error}") | |
| raise load_error | |
| def process_json_in_response(response): | |
| """Process and format JSON content in the response""" | |
| try: | |
| # Check if response contains JSON-like content | |
| if '{' in response and '}' in response: | |
| processor = JsonProcessor() | |
| # Try to process the response for JSON content | |
| processed_json = processor.process_response(response) | |
| if processed_json: | |
| # Format the JSON nicely | |
| formatted_json = json.dumps(processed_json, indent=2, ensure_ascii=False) | |
| # Replace the JSON part in the response | |
| import re | |
| json_pattern = r'\{.*\}' | |
| match = re.search(json_pattern, response, re.DOTALL) | |
| if match: | |
| # Replace the matched JSON with the formatted version | |
| response = response.replace(match.group(), formatted_json) | |
| return response | |
| except Exception: | |
| # If processing fails, return original response | |
| return response | |
| # GPU inference | |
| def generate_response_gpu(prompt, max_tokens=512): | |
| """Generate response - executed on GPU""" | |
| global model | |
| # Ensure tokenizer is loaded | |
| if tokenizer is None: | |
| load_model_and_tokenizer() | |
| # Ensure model is loaded on GPU | |
| if model is None: | |
| model = load_model_on_gpu() | |
| if model is None: | |
| return "β Model failed to load. Please check the Space logs." | |
| try: | |
| formatted_prompt = ( | |
| "### Instruction:\n" | |
| f"{prompt.strip()}\n\n" | |
| "### Response:\n" | |
| ) | |
| # Encode input | |
| inputs = tokenizer( | |
| formatted_prompt, | |
| return_tensors="pt", | |
| truncation=True, | |
| max_length=2048 | |
| ).to(model.device) | |
| # Generate response | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_tokens, | |
| do_sample=False, | |
| temperature=None, | |
| top_p=None, | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| repetition_penalty=1.1, | |
| early_stopping=True, | |
| no_repeat_ngram_size=3 | |
| ) | |
| # Decode output | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Extract generated part | |
| if "### Response:" in response: | |
| response = response.split("### Response:")[-1].strip() | |
| elif len(response) > len(formatted_prompt): | |
| response = response[len(formatted_prompt):].strip() | |
| # Process JSON if present in response | |
| response = process_json_in_response(response) | |
| return response if response else "β No response generated. Please try again with a different prompt." | |
| except Exception as generation_error: | |
| return f"β Generation Error: {str(generation_error)}" | |
| def chat_interface(message, history, max_tokens): | |
| """Chat interface - runs on CPU, calls GPU functions""" | |
| if not message.strip(): | |
| return history, "" | |
| # Initialize tokenizer (if needed) | |
| if tokenizer is None: | |
| load_model_and_tokenizer() | |
| try: | |
| # Call GPU function to generate response | |
| response = generate_response_gpu(message, max_tokens) | |
| history.append((message, response)) | |
| return history, "" | |
| except Exception as chat_error: | |
| error_msg = f"β Chat Error: {str(chat_error)}" | |
| history.append((message, error_msg)) | |
| return history, "" | |
| # Load tokenizer at startup | |
| load_model_and_tokenizer() | |
| # Create Gradio application | |
| with gr.Blocks( | |
| title="Robot Task Planning - Llama 3.1 8B", | |
| theme=gr.themes.Soft(), | |
| css=""" | |
| .gradio-container { | |
| max-width: 1200px; | |
| margin: auto; | |
| } | |
| """ | |
| ) as app: | |
| gr.Markdown(""" | |
| # π€ Llama 3.1 8B - Robot Task Planning | |
| This is a fine-tuned version of Meta's Llama 3.1 8B model specialized for **robot task planning** using QLoRA technique. | |
| **Capabilities**: Convert natural language robot commands into structured task sequences for excavators, dump trucks, and other construction robots. | |
| **Model**: [YongdongWang/llama3.1-8b-lora-qlora-dart-llm](https://huggingface.co/YongdongWang/llama3.1-8b-lora-qlora-dart-llm) | |
| β‘ **Using ZeroGPU**: This Space uses dynamic GPU allocation (Nvidia H200). First generation might take a bit longer. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| chatbot = gr.Chatbot( | |
| label="Task Planning Results", | |
| height=500, | |
| show_label=True, | |
| container=True, | |
| bubble_full_width=False, | |
| show_copy_button=True | |
| ) | |
| msg = gr.Textbox( | |
| label="Robot Command", | |
| placeholder="Enter robot task command (e.g., 'Deploy Excavator 1 to Soil Area 1')...", | |
| lines=2, | |
| max_lines=5, | |
| show_label=True, | |
| container=True | |
| ) | |
| with gr.Row(): | |
| send_btn = gr.Button("π Generate Tasks", variant="primary", size="sm") | |
| clear_btn = gr.Button("ποΈ Clear", variant="secondary", size="sm") | |
| with gr.Column(scale=1): | |
| gr.Markdown("### βοΈ Generation Settings") | |
| max_tokens = gr.Slider( | |
| minimum=50, | |
| maximum=5000, | |
| value=512, | |
| step=10, | |
| label="Max Tokens", | |
| info="Maximum number of tokens to generate" | |
| ) | |
| gr.Markdown(""" | |
| ### π Model Status | |
| - **Hardware**: ZeroGPU (Dynamic Nvidia H200) | |
| - **Status**: Ready | |
| - **Note**: First generation allocates GPU resources | |
| """) | |
| # Example conversations | |
| gr.Examples( | |
| examples=[ | |
| "Dump truck 1 goes to the puddle for inspection, after which all robots avoid the puddle.", | |
| "Drive the Excavator 1 to the obstacle, and perform excavation to clear the obstacle.", | |
| "Send Excavator 1 and Dump Truck 1 to the soil area; Excavator 1 will excavate and unload, followed by Dump Truck 1 proceeding to the puddle for unloading.", | |
| "Move Excavator 1 and Dump Truck 1 to soil area 2; Excavator 1 will excavate and unload, then Dump Truck 1 returns to the starting position to unload.", | |
| "Excavator 1 is guided to the obstacle to excavate and unload to clear the obstacle, then excavator 1 and dump truck 1 are moved to the soil area, and the excavator excavates and unloads. Finally, dump truck 1 unloads the soil into the puddle.", | |
| "Excavator 1 goes to the obstacle to excavate and unload to clear the obstacle. Once the obstacle is cleared, mobilize all available robots to proceed to the puddle area for inspection.", | |
| ], | |
| inputs=msg, | |
| label="π‘ Example Operator Commands" | |
| ) | |
| # Event handling | |
| msg.submit( | |
| chat_interface, | |
| inputs=[msg, chatbot, max_tokens], | |
| outputs=[chatbot, msg] | |
| ) | |
| send_btn.click( | |
| chat_interface, | |
| inputs=[msg, chatbot, max_tokens], | |
| outputs=[chatbot, msg] | |
| ) | |
| clear_btn.click( | |
| lambda: ([], ""), | |
| outputs=[chatbot, msg] | |
| ) | |
| if __name__ == "__main__": | |
| app.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=True, | |
| show_error=True | |
| ) |