Spaces:
Build error
Build error
| import gradio as gr | |
| import spaces # Import spaces module for ZeroGPU | |
| from huggingface_hub import login | |
| import os | |
| from json_processor import JsonProcessor | |
| from dag_visualizer import DAGVisualizer | |
| import json | |
| # 1) Read Secrets | |
| hf_token = os.getenv("HUGGINGFACE_TOKEN") | |
| if not hf_token: | |
| raise RuntimeError("β HUGGINGFACE_TOKEN not detected, please check Space Settings β Secrets") | |
| # 2) Login to ensure all subsequent from_pretrained calls have proper permissions | |
| login(hf_token) | |
| from transformers import AutoTokenizer | |
| from huggingface_hub import hf_hub_download | |
| from llama_cpp import Llama | |
| import warnings | |
| import os | |
| warnings.filterwarnings("ignore") | |
| # Model configurations for GGUF models | |
| MODEL_CONFIGS = { | |
| "1B": { | |
| "name": "Dart-llm-model-1B", | |
| "base_model": "meta-llama/Llama-3.2-1B", # For tokenizer | |
| "gguf_model": "YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf", | |
| "gguf_file": "llama_3.2_1b-lora-qlora-dart-llm_q5_k_m.gguf" | |
| }, | |
| "3B": { | |
| "name": "Dart-llm-model-3B", | |
| "base_model": "meta-llama/Llama-3.2-3B", # For tokenizer | |
| "gguf_model": "YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf", | |
| "gguf_file": "llama_3.2_3b-lora-qlora-dart-llm_q4_k_m.gguf" | |
| }, | |
| "8B": { | |
| "name": "Dart-llm-model-8B", | |
| "base_model": "meta-llama/Llama-3.1-8B", # For tokenizer | |
| "gguf_model": "YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf", | |
| "gguf_file": "llama3.1-8b-lora-qlora-dart-llm_q4_k_m_fp16.gguf" | |
| } | |
| } | |
| DEFAULT_MODEL = "1B" # Set 1B as default | |
| # Global variables to store model and tokenizer | |
| llm_model = None | |
| tokenizer = None | |
| current_model_config = None | |
| model_loaded = False | |
| # Initialize DAG visualizer | |
| dag_visualizer = DAGVisualizer() | |
| def load_model_and_tokenizer(selected_model=DEFAULT_MODEL): | |
| """Load tokenizer - executed on CPU""" | |
| global tokenizer, model_loaded, current_model_config | |
| if model_loaded and current_model_config == selected_model: | |
| return | |
| print(f"π Loading tokenizer for {MODEL_CONFIGS[selected_model]['name']}...") | |
| # Load tokenizer from base model | |
| base_model = MODEL_CONFIGS[selected_model]["base_model"] | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| base_model, | |
| use_fast=False, | |
| trust_remote_code=True | |
| ) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| current_model_config = selected_model | |
| model_loaded = True | |
| print("β Tokenizer loaded successfully!") | |
| # Request GPU for loading model at startup | |
| def load_gguf_model_on_gpu(selected_model=DEFAULT_MODEL): | |
| """Load GGUF model using llama-cpp-python""" | |
| global llm_model | |
| # If model is already loaded and it's the same model, return it | |
| if llm_model is not None and current_model_config == selected_model: | |
| return llm_model | |
| # Clear existing model if switching | |
| if llm_model is not None: | |
| print("ποΈ Clearing existing model from GPU...") | |
| del llm_model | |
| llm_model = None | |
| model_config = MODEL_CONFIGS[selected_model] | |
| print(f"π Loading {model_config['name']} GGUF model...") | |
| try: | |
| # Download GGUF model file from HuggingFace Hub | |
| model_file = hf_hub_download( | |
| repo_id=model_config["gguf_model"], | |
| filename=model_config["gguf_file"], | |
| cache_dir="./gguf_cache" | |
| ) | |
| print(f"π¦ Downloaded GGUF file: {model_file}") | |
| # Load GGUF model with llama-cpp-python | |
| llm_model = Llama( | |
| model_path=model_file, | |
| n_ctx=2048, # Context length | |
| n_gpu_layers=-1, # Use all GPU layers if available | |
| verbose=False | |
| ) | |
| print(f"β {model_config['name']} GGUF model loaded successfully!") | |
| return llm_model | |
| except Exception as load_error: | |
| print(f"β GGUF Model loading failed: {load_error}") | |
| raise load_error | |
| def process_json_in_response(response): | |
| """Process and format JSON content in the response, and generate DAG visualization""" | |
| dag_image_path = None | |
| try: | |
| # Check if response contains JSON-like content | |
| if '{' in response and '}' in response: | |
| processor = JsonProcessor() | |
| # Try to process the response for JSON content | |
| processed_json = processor.process_response(response) | |
| if processed_json: | |
| # Format the JSON nicely | |
| formatted_json = json.dumps(processed_json, indent=2, ensure_ascii=False) | |
| # Generate DAG visualization if the JSON contains tasks | |
| if "tasks" in processed_json and processed_json["tasks"]: | |
| try: | |
| dag_image_path = dag_visualizer.create_dag_visualization( | |
| processed_json, | |
| title="Robot Task Dependency Graph" | |
| ) | |
| except Exception as e: | |
| print(f"DAG visualization failed: {e}") | |
| # Replace the JSON part in the response | |
| import re | |
| json_pattern = r'\{.*\}' | |
| match = re.search(json_pattern, response, re.DOTALL) | |
| if match: | |
| # Replace the matched JSON with the formatted version | |
| response = response.replace(match.group(), formatted_json) | |
| return response, dag_image_path | |
| except Exception: | |
| # If processing fails, return original response | |
| return response, None | |
| # GPU inference | |
| def generate_response_gpu(prompt, max_tokens=512, selected_model=DEFAULT_MODEL): | |
| """Generate response using GGUF model - executed on GPU""" | |
| global llm_model | |
| # Ensure model is loaded on GPU | |
| if llm_model is None or current_model_config != selected_model: | |
| llm_model = load_gguf_model_on_gpu(selected_model) | |
| if llm_model is None: | |
| return ("β GGUF Model failed to load. Please check the Space logs.", None) | |
| try: | |
| formatted_prompt = ( | |
| "### Instruction:\n" | |
| f"{prompt.strip()}\n\n" | |
| "### Response:\n" | |
| ) | |
| # Generate response using llama-cpp-python | |
| output = llm_model( | |
| formatted_prompt, | |
| max_tokens=max_tokens, | |
| stop=["### Instruction:", "###"], | |
| echo=False, | |
| temperature=0.1, | |
| top_p=0.9, | |
| repeat_penalty=1.1 | |
| ) | |
| # Extract the generated text | |
| response = output['choices'][0]['text'].strip() | |
| # Process JSON if present in response and generate DAG | |
| response, dag_image_path = process_json_in_response(response) | |
| return (response if response else "β No response generated. Please try again with a different prompt.", dag_image_path) | |
| except Exception as generation_error: | |
| return (f"β Generation Error: {str(generation_error)}", None) | |
| def chat_interface(message, history, max_tokens, selected_model): | |
| """Chat interface - runs on CPU, calls GPU functions""" | |
| if not message.strip(): | |
| return history, "", None | |
| try: | |
| # Call GPU function to generate response | |
| response, dag_image_path = generate_response_gpu(message, max_tokens, selected_model) | |
| history.append((message, response)) | |
| return history, "", dag_image_path | |
| except Exception as chat_error: | |
| error_msg = f"β Chat Error: {str(chat_error)}" | |
| history.append((message, error_msg)) | |
| return history, "", None | |
| # GGUF models include tokenizer, no separate loading needed | |
| # Create Gradio application | |
| with gr.Blocks( | |
| title="Robot Task Planning - DART-LLM Multi-Model", | |
| theme=gr.themes.Soft(), | |
| css=""" | |
| .gradio-container { | |
| max-width: 1200px; | |
| margin: auto; | |
| } | |
| """ | |
| ) as app: | |
| gr.Markdown(""" | |
| # π€ DART-LLM Multi-Model - Robot Task Planning | |
| Choose from **three GGUF quantized models** specialized for **robot task planning** using QLoRA fine-tuning: | |
| - **π Dart-llm-model-1B** (Default): Fastest inference, Q5_K_M quantization | |
| - **βοΈ Dart-llm-model-3B**: Balanced performance, Q4_K_M quantization | |
| - **π― Dart-llm-model-8B**: Best quality output, Q4_K_M quantization | |
| **GGUF Implementation**: Uses native GGUF format with llama-cpp-python for optimal memory efficiency and GPU acceleration. | |
| **Capabilities**: | |
| - Convert natural language robot commands into structured task sequences | |
| - **NEW: Automatic DAG Visualization** - Generates visual dependency graphs for robot task sequences | |
| - Support for excavators, dump trucks, and other construction robots | |
| **GGUF Models**: | |
| - [YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf) (Default - Q5_K_M) | |
| - [YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf) (Q4_K_M) | |
| - [YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf) (Q4_K_M) | |
| β‘ **Using ZeroGPU**: This Space uses dynamic GPU allocation (Nvidia H200). First generation might take a bit longer. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| chatbot = gr.Chatbot( | |
| label="Task Planning Results", | |
| height=400, | |
| show_label=True, | |
| container=True, | |
| bubble_full_width=False, | |
| show_copy_button=True | |
| ) | |
| msg = gr.Textbox( | |
| label="Robot Command", | |
| placeholder="Enter robot task command (e.g., 'Deploy Excavator 1 to Soil Area 1')...", | |
| lines=2, | |
| max_lines=5, | |
| show_label=True, | |
| container=True | |
| ) | |
| with gr.Row(): | |
| send_btn = gr.Button("π Generate Tasks", variant="primary", size="sm") | |
| clear_btn = gr.Button("ποΈ Clear", variant="secondary", size="sm") | |
| with gr.Column(scale=2): | |
| dag_image = gr.Image( | |
| label="Task Dependency Graph (DAG)", | |
| show_label=True, | |
| container=True, | |
| height=400, | |
| interactive=False | |
| ) | |
| with gr.Column(scale=1): | |
| gr.Markdown("### βοΈ Generation Settings") | |
| model_selector = gr.Dropdown( | |
| choices=[(config["name"], key) for key, config in MODEL_CONFIGS.items()], | |
| value=DEFAULT_MODEL, | |
| label="Model Size", | |
| info="Select model size (1B = fastest, 8B = best quality)", | |
| interactive=True | |
| ) | |
| max_tokens = gr.Slider( | |
| minimum=50, | |
| maximum=5000, | |
| value=512, | |
| step=10, | |
| label="Max Tokens", | |
| info="Maximum number of tokens to generate" | |
| ) | |
| gr.Markdown(""" | |
| ### π Model Status | |
| - **Hardware**: ZeroGPU (Dynamic Nvidia H200) | |
| - **Status**: Ready | |
| - **Note**: First generation allocates GPU resources | |
| - **Dart-llm-model-1B**: Fastest inference (Default) | |
| - **Dart-llm-model-3B**: Balanced speed/quality | |
| - **Dart-llm-model-8B**: Best quality, slower | |
| """) | |
| # Example conversations | |
| gr.Examples( | |
| examples=[ | |
| "Dump truck 1 goes to the puddle for inspection, after which all robots avoid the puddle.", | |
| "Drive the Excavator 1 to the obstacle, and perform excavation to clear the obstacle.", | |
| "Send Excavator 1 and Dump Truck 1 to the soil area; Excavator 1 will excavate and unload, followed by Dump Truck 1 proceeding to the puddle for unloading.", | |
| "Move Excavator 1 and Dump Truck 1 to soil area 2; Excavator 1 will excavate and unload, then Dump Truck 1 returns to the starting position to unload.", | |
| "Excavator 1 is guided to the obstacle to excavate and unload to clear the obstacle, then excavator 1 and dump truck 1 are moved to the soil area, and the excavator excavates and unloads. Finally, dump truck 1 unloads the soil into the puddle.", | |
| "Excavator 1 goes to the obstacle to excavate and unload to clear the obstacle. Once the obstacle is cleared, mobilize all available robots to proceed to the puddle area for inspection.", | |
| ], | |
| inputs=msg, | |
| label="π‘ Example Operator Commands" | |
| ) | |
| # Event handling | |
| msg.submit( | |
| chat_interface, | |
| inputs=[msg, chatbot, max_tokens, model_selector], | |
| outputs=[chatbot, msg, dag_image] | |
| ) | |
| send_btn.click( | |
| chat_interface, | |
| inputs=[msg, chatbot, max_tokens, model_selector], | |
| outputs=[chatbot, msg, dag_image] | |
| ) | |
| clear_btn.click( | |
| lambda: ([], "", None), | |
| outputs=[chatbot, msg, dag_image] | |
| ) | |
| if __name__ == "__main__": | |
| app.launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=True, | |
| show_error=True | |
| ) |