Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| import pandas as pd | |
| import numpy as np | |
| from pathlib import Path | |
| import sys | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| from transformers import BertTokenizer | |
| import nltk | |
| # Download required NLTK data | |
| try: | |
| nltk.data.find('tokenizers/punkt') | |
| except LookupError: | |
| nltk.download('punkt') | |
| try: | |
| nltk.data.find('corpora/stopwords') | |
| except LookupError: | |
| nltk.download('stopwords') | |
| try: | |
| nltk.data.find('tokenizers/punkt_tab') | |
| except LookupError: | |
| nltk.download('punkt_tab') | |
| try: | |
| nltk.data.find('corpora/wordnet') | |
| except LookupError: | |
| nltk.download('wordnet') | |
| # Add project root to Python path | |
| project_root = Path(__file__).parent.parent | |
| sys.path.append(str(project_root)) | |
| from src.models.hybrid_model import HybridFakeNewsDetector | |
| from src.config.config import * | |
| from src.data.preprocessor import TextPreprocessor | |
| # Page config is set in main app.py | |
| def load_model_and_tokenizer(): | |
| """Load the model and tokenizer (cached).""" | |
| # Initialize model | |
| model = HybridFakeNewsDetector( | |
| bert_model_name=BERT_MODEL_NAME, | |
| lstm_hidden_size=LSTM_HIDDEN_SIZE, | |
| lstm_num_layers=LSTM_NUM_LAYERS, | |
| dropout_rate=DROPOUT_RATE | |
| ) | |
| # Load trained weights | |
| state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu')) | |
| # Filter out unexpected keys | |
| model_state_dict = model.state_dict() | |
| filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict} | |
| # Load the filtered state dict | |
| model.load_state_dict(filtered_state_dict, strict=False) | |
| model.eval() | |
| # Initialize tokenizer | |
| tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME) | |
| return model, tokenizer | |
| def get_preprocessor(): | |
| """Get the text preprocessor (cached).""" | |
| return TextPreprocessor() | |
| def predict_news(text): | |
| """Predict if the given news is fake or real.""" | |
| # Get model, tokenizer, and preprocessor from cache | |
| model, tokenizer = load_model_and_tokenizer() | |
| preprocessor = get_preprocessor() | |
| # Preprocess text | |
| processed_text = preprocessor.preprocess_text(text) | |
| # Tokenize | |
| encoding = tokenizer.encode_plus( | |
| processed_text, | |
| add_special_tokens=True, | |
| max_length=MAX_SEQUENCE_LENGTH, | |
| padding='max_length', | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors='pt' | |
| ) | |
| # Get prediction | |
| with torch.no_grad(): | |
| outputs = model( | |
| encoding['input_ids'], | |
| encoding['attention_mask'] | |
| ) | |
| probabilities = torch.softmax(outputs['logits'], dim=1) | |
| prediction = torch.argmax(outputs['logits'], dim=1) | |
| attention_weights = outputs['attention_weights'] | |
| # Convert attention weights to numpy and get the first sequence | |
| attention_weights_np = attention_weights[0].cpu().numpy() | |
| return { | |
| 'prediction': prediction.item(), | |
| 'label': 'FAKE' if prediction.item() == 1 else 'REAL', | |
| 'confidence': torch.max(probabilities, dim=1)[0].item(), | |
| 'probabilities': { | |
| 'REAL': probabilities[0][0].item(), | |
| 'FAKE': probabilities[0][1].item() | |
| }, | |
| 'attention_weights': attention_weights_np | |
| } | |
| def plot_confidence(probabilities): | |
| """Plot prediction confidence.""" | |
| fig = go.Figure(data=[ | |
| go.Bar( | |
| x=list(probabilities.keys()), | |
| y=list(probabilities.values()), | |
| text=[f'{p:.2%}' for p in probabilities.values()], | |
| textposition='auto', | |
| ) | |
| ]) | |
| fig.update_layout( | |
| title='Prediction Confidence', | |
| xaxis_title='Class', | |
| yaxis_title='Probability', | |
| yaxis_range=[0, 1] | |
| ) | |
| return fig | |
| def plot_attention(text, attention_weights): | |
| """Plot attention weights.""" | |
| tokens = text.split() | |
| attention_weights = attention_weights[:len(tokens)] # Truncate to match tokens | |
| # Ensure attention weights are in the correct format | |
| if isinstance(attention_weights, (list, np.ndarray)): | |
| attention_weights = np.array(attention_weights).flatten() | |
| # Format weights for display | |
| formatted_weights = [f'{float(w):.2f}' for w in attention_weights] | |
| fig = go.Figure(data=[ | |
| go.Bar( | |
| x=tokens, | |
| y=attention_weights, | |
| text=formatted_weights, | |
| textposition='auto', | |
| ) | |
| ]) | |
| fig.update_layout( | |
| title='Attention Weights', | |
| xaxis_title='Tokens', | |
| yaxis_title='Attention Weight', | |
| xaxis_tickangle=45 | |
| ) | |
| return fig | |
| def main(): | |
| # Main Container | |
| st.markdown('<div class="main-container">', unsafe_allow_html=True) | |
| # Custom CSS with Poppins font | |
| st.markdown(""" | |
| <style> | |
| @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;500;600;700&display=swap'); | |
| * { | |
| font-family: 'Poppins', sans-serif !important; | |
| box-sizing: border-box; | |
| } | |
| .stApp { | |
| background: #ffffff; | |
| min-height: 100vh; | |
| color: #1f2a44; | |
| } | |
| #MainMenu {visibility: hidden;} | |
| footer {visibility: hidden;} | |
| .stDeployButton {display: none;} | |
| header {visibility: hidden;} | |
| .stApp > header {visibility: hidden;} | |
| /* Main Container */ | |
| .main-container { | |
| max-width: 1200px; | |
| margin: 0 auto; | |
| padding: 1rem 2rem; | |
| } | |
| /* Header Section */ | |
| .header-section { | |
| text-align: center; | |
| margin-bottom: 2.5rem; | |
| padding: 1.5rem 0; | |
| } | |
| .header-title { | |
| font-size: 2.25rem; | |
| font-weight: 700; | |
| color: #1f2a44; | |
| margin: 0; | |
| } | |
| /* Section Styling */ | |
| .section { | |
| margin-bottom: 2.5rem; | |
| max-width: 1200px; | |
| margin-left: auto; | |
| margin-right: auto; | |
| padding: 0 1rem; | |
| } | |
| .section-title { | |
| font-size: 1.5rem; | |
| font-weight: 600; | |
| color: #1f2a44; | |
| margin-bottom: 1rem; | |
| display: flex; | |
| align-items: center; | |
| gap: 0.5rem; | |
| } | |
| .section-text { | |
| font-size: 0.95rem; | |
| color: #6b7280; | |
| line-height: 1.6; | |
| max-width: 800px; | |
| margin: 0 auto; | |
| } | |
| /* Sidebar */ | |
| .stSidebar { | |
| background: #f4f7fa; | |
| padding: 1rem; | |
| } | |
| /* Input Section */ | |
| .input-container { | |
| max-width: 800px; | |
| margin: 0 auto; | |
| } | |
| .stTextArea > div > div > textarea { | |
| border-radius: 8px !important; | |
| border: 1px solid #d1d5db !important; | |
| padding: 1rem !important; | |
| font-size: 1rem !important; | |
| background: #ffffff !important; | |
| min-height: 200px !important; | |
| transition: all 0.2s ease !important; | |
| } | |
| .stTextArea > div > div > textarea:focus { | |
| border-color: #6366f1 !important; | |
| box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.1) !important; | |
| outline: none !important; | |
| } | |
| .stTextArea > div > div > textarea::placeholder { | |
| color: #9ca3af !important; | |
| } | |
| /* Button Styling */ | |
| .stButton > button { | |
| background: #6366f1 !important; | |
| color: white !important; | |
| border-radius: 8px !important; | |
| padding: 0.75rem 2rem !important; | |
| font-size: 1rem !important; | |
| font-weight: 600 !important; | |
| transition: all 0.2s ease !important; | |
| border: none !important; | |
| width: 100% !important; | |
| max-width: 300px; | |
| } | |
| .stButton > button:hover { | |
| background: #4f46e5 !important; | |
| transform: translateY(-1px) !important; | |
| } | |
| /* Results Section */ | |
| .results-container { | |
| margin-top: 1rem; | |
| padding: 1rem; | |
| border-radius: 8px; | |
| max-width: 1200px; | |
| margin-left: auto; | |
| margin-right: auto; | |
| } | |
| .result-card { | |
| padding: 1rem; | |
| border-radius: 8px; | |
| border-left: 4px solid transparent; | |
| margin-bottom: 1rem; | |
| } | |
| .fake-news { | |
| background: #fef2f2; | |
| border-left-color: #ef4444; | |
| } | |
| .real-news { | |
| background: #ecfdf5; | |
| border-left-color: #10b981; | |
| } | |
| .prediction-badge { | |
| font-weight: 600; | |
| font-size: 1rem; | |
| margin-bottom: 0.5rem; | |
| display: flex; | |
| align-items: center; | |
| gap: 0.5rem; | |
| } | |
| .confidence-score { | |
| font-weight: 600; | |
| margin-left: auto; | |
| font-size: 1rem; | |
| } | |
| /* Chart Containers */ | |
| .chart-container { | |
| padding: 1rem; | |
| border-radius: 8px; | |
| margin: 1rem 0; | |
| max-width: 1200px; | |
| margin-left: auto; | |
| margin-right: auto; | |
| } | |
| /* Footer */ | |
| .footer { | |
| border-top: 1px solid #e5e7eb; | |
| padding: 1.5rem 0; | |
| text-align: center; | |
| max-width: 1200px; | |
| margin: 2rem auto 0; | |
| } | |
| /* Responsive Design */ | |
| @media (max-width: 1024px) { | |
| .main-container { | |
| padding: 1rem; | |
| } | |
| .section { | |
| padding: 0 0.5rem; | |
| } | |
| } | |
| @media (max-width: 768px) { | |
| .header-title { | |
| font-size: 1.75rem; | |
| } | |
| .section-title { | |
| font-size: 1.25rem; | |
| } | |
| .section-text { | |
| font-size: 0.9rem; | |
| } | |
| } | |
| @media (max-width: 480px) { | |
| .header-title { | |
| font-size: 1.5rem; | |
| } | |
| .section-title { | |
| font-size: 1.1rem; | |
| } | |
| .section-text { | |
| font-size: 0.85rem; | |
| } | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Header Section | |
| st.markdown('<h1 class="header-title">π° TruthCheck - Advanced Fake News Detection System</h1>', unsafe_allow_html=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| # Main Content | |
| st.markdown('<div class="section">', unsafe_allow_html=True) | |
| st.markdown('<p class="section-text">This application uses a hybrid deep learning model (BERT + BiLSTM + Attention) to detect fake news articles. Enter a news article below to analyze it.</p>', unsafe_allow_html=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| # News Analysis Section | |
| st.markdown('<div class="section">', unsafe_allow_html=True) | |
| st.markdown('<h2 class="section-title">π News Analysis</h2>', unsafe_allow_html=True) | |
| # Input Section | |
| st.markdown('<div class="input-container">', unsafe_allow_html=True) | |
| news_text = st.text_area( | |
| "Enter the news article to analyze:", | |
| height=200, | |
| placeholder="Paste your news article here..." | |
| ) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| if st.button("Analyze"): | |
| if news_text: | |
| with st.spinner("Analyzing the news article..."): | |
| # Get prediction | |
| result = predict_news(news_text) | |
| # Display result | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.markdown('<div class="results-container">', unsafe_allow_html=True) | |
| st.markdown('<h3 class="section-title">π Prediction</h3>', unsafe_allow_html=True) | |
| if result['label'] == 'FAKE': | |
| st.markdown(f'<div class="result-card fake-news"><div class="prediction-badge">π¨ Fake News Detected <span class="confidence-score">{result["confidence"]:.2%}</span></div></div>', unsafe_allow_html=True) | |
| else: | |
| st.markdown(f'<div class="result-card real-news"><div class="prediction-badge">β Authentic News <span class="confidence-score">{result["confidence"]:.2%}</span></div></div>', unsafe_allow_html=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| with col2: | |
| st.markdown('<div class="results-container">', unsafe_allow_html=True) | |
| st.markdown('<h3 class="section-title">π Confidence Scores</h3>', unsafe_allow_html=True) | |
| st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| # Show attention visualization | |
| st.markdown('<div class="section">', unsafe_allow_html=True) | |
| st.markdown('<h3 class="section-title">ποΈ Attention Analysis</h3>', unsafe_allow_html=True) | |
| st.markdown('<p class="section-text">The attention weights show which parts of the text the model focused on while making its prediction. Higher weights indicate more important tokens.</p>', unsafe_allow_html=True) | |
| st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| # Show model explanation | |
| st.markdown('<div class="section">', unsafe_allow_html=True) | |
| st.markdown('<h3 class="section-title">π Model Explanation</h3>', unsafe_allow_html=True) | |
| if result['label'] == 'FAKE': | |
| st.markdown('<p class="section-text">The model identified this as fake news based on:<ul><li>Linguistic patterns typical of fake news</li><li>Inconsistencies in the content</li><li>Attention weights on suspicious phrases</li></ul></p>', unsafe_allow_html=True) | |
| else: | |
| st.markdown('<p class="section-text">The model identified this as real news based on:<ul><li>Credible language patterns</li><li>Consistent information</li><li>Attention weights on factual statements</li></ul></p>', unsafe_allow_html=True) | |
| st.markdown('</div>', unsafe_allow_html=True) | |
| else: | |
| st.warning("Please enter a news article to analyze.") | |
| # Footer | |
| st.markdown( | |
| '<div class="footer"><p style="text-align: center; font-weight: 600; font-size: 16px;">π» Developed with β€οΈ using Streamlit | Β© 2025</p></div>', | |
| unsafe_allow_html=True | |
| ) | |
| st.markdown('</div>', unsafe_allow_html=True) # Close main-container | |
| if __name__ == "__main__": | |
| main() |