Spaces:
Running
Running
Update src/app.py
Browse files- src/app.py +180 -462
src/app.py
CHANGED
|
@@ -4,520 +4,238 @@ import pandas as pd
|
|
| 4 |
import numpy as np
|
| 5 |
from pathlib import Path
|
| 6 |
import sys
|
|
|
|
| 7 |
import plotly.graph_objects as go
|
| 8 |
from transformers import BertTokenizer
|
| 9 |
import nltk
|
| 10 |
|
| 11 |
# Download required NLTK data
|
| 12 |
-
|
| 13 |
-
'tokenizers/punkt'
|
| 14 |
-
|
| 15 |
-
'
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Add project root to Python path
|
| 25 |
project_root = Path(__file__).parent.parent
|
| 26 |
sys.path.append(str(project_root))
|
| 27 |
|
| 28 |
from src.models.hybrid_model import HybridFakeNewsDetector
|
| 29 |
-
from src.config.config import
|
| 30 |
from src.data.preprocessor import TextPreprocessor
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
st.markdown("""
|
| 34 |
-
<style>
|
| 35 |
-
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;500;600;700&display=swap');
|
| 36 |
-
|
| 37 |
-
* {
|
| 38 |
-
font-family: 'Poppins', sans-serif !important;
|
| 39 |
-
box-sizing: border-box;
|
| 40 |
-
}
|
| 41 |
-
|
| 42 |
-
.stApp {
|
| 43 |
-
background: #ffffff;
|
| 44 |
-
min-height: 100vh;
|
| 45 |
-
color: #1f2a44;
|
| 46 |
-
}
|
| 47 |
-
|
| 48 |
-
#MainMenu {visibility: hidden;}
|
| 49 |
-
footer {visibility: hidden;}
|
| 50 |
-
.stDeployButton {display: none;}
|
| 51 |
-
header {visibility: hidden;}
|
| 52 |
-
.stApp > header {visibility: hidden;}
|
| 53 |
-
|
| 54 |
-
/* Main Container */
|
| 55 |
-
.main-container {
|
| 56 |
-
max-width: 1200px;
|
| 57 |
-
margin: 0 auto;
|
| 58 |
-
padding: 1rem 2rem;
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
/* Header Section */
|
| 62 |
-
.header-section {
|
| 63 |
-
text-align: center;
|
| 64 |
-
margin-bottom: 2.5rem;
|
| 65 |
-
padding: 1.5rem 0;
|
| 66 |
-
}
|
| 67 |
-
|
| 68 |
-
.header-title {
|
| 69 |
-
font-size: 2.25rem;
|
| 70 |
-
font-weight: 700;
|
| 71 |
-
color: #1f2a44;
|
| 72 |
-
margin: 0;
|
| 73 |
-
}
|
| 74 |
-
|
| 75 |
-
/* Hero Section */
|
| 76 |
-
.hero {
|
| 77 |
-
display: flex;
|
| 78 |
-
align-items: center;
|
| 79 |
-
gap: 2rem;
|
| 80 |
-
margin-bottom: 2rem;
|
| 81 |
-
padding: 0 1rem;
|
| 82 |
-
}
|
| 83 |
-
|
| 84 |
-
.hero-left {
|
| 85 |
-
flex: 1;
|
| 86 |
-
padding: 1.5rem;
|
| 87 |
-
}
|
| 88 |
-
|
| 89 |
-
.hero-right {
|
| 90 |
-
flex: 1;
|
| 91 |
-
display: flex;
|
| 92 |
-
align-items: center;
|
| 93 |
-
justify-content: center;
|
| 94 |
-
}
|
| 95 |
-
|
| 96 |
-
.hero-right img {
|
| 97 |
-
max-width: 100%;
|
| 98 |
-
height: auto;
|
| 99 |
-
border-radius: 8px;
|
| 100 |
-
object-fit: cover;
|
| 101 |
-
}
|
| 102 |
-
|
| 103 |
-
.hero-title {
|
| 104 |
-
font-size: 2.5rem;
|
| 105 |
-
font-weight: 700;
|
| 106 |
-
color: #1f2a44;
|
| 107 |
-
margin-bottom: 0.5rem;
|
| 108 |
-
}
|
| 109 |
-
|
| 110 |
-
.hero-text {
|
| 111 |
-
font-size: 1rem;
|
| 112 |
-
color: #6b7280;
|
| 113 |
-
line-height: 1.6;
|
| 114 |
-
max-width: 450px;
|
| 115 |
-
}
|
| 116 |
-
|
| 117 |
-
/* About Section */
|
| 118 |
-
.about-section {
|
| 119 |
-
margin-bottom: 2rem;
|
| 120 |
-
text-align: center;
|
| 121 |
-
padding: 0 1rem;
|
| 122 |
-
}
|
| 123 |
-
|
| 124 |
-
.about-title {
|
| 125 |
-
font-size: 1.75rem;
|
| 126 |
-
font-weight: 600;
|
| 127 |
-
color: #1f2a44;
|
| 128 |
-
margin-bottom: 0.5rem;
|
| 129 |
-
}
|
| 130 |
-
|
| 131 |
-
.about-text {
|
| 132 |
-
font-size: 0.95rem;
|
| 133 |
-
color: #6b7280;
|
| 134 |
-
line-height: 1.6;
|
| 135 |
-
max-width: 600px;
|
| 136 |
-
margin: 0 auto;
|
| 137 |
-
}
|
| 138 |
-
|
| 139 |
-
/* Input Section */
|
| 140 |
-
.input-container {
|
| 141 |
-
max-width: 800px;
|
| 142 |
-
margin: 0 auto;
|
| 143 |
-
}
|
| 144 |
-
|
| 145 |
-
.stTextArea > div > div > textarea {
|
| 146 |
-
border-radius: 8px !important;
|
| 147 |
-
border: 1px solid #d1d5db !important;
|
| 148 |
-
padding: 1rem !important;
|
| 149 |
-
font-size: 1rem !important;
|
| 150 |
-
background: #ffffff !important;
|
| 151 |
-
min-height: 150px !important;
|
| 152 |
-
transition: all 0.2s ease !important;
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
-
.stTextArea > div > div > textarea:focus {
|
| 156 |
-
border-color: #6366f1 !important;
|
| 157 |
-
box-shadow: 0 0 0 2px rgba(99, 102, 241, 0.1) !important;
|
| 158 |
-
outline: none !important;
|
| 159 |
-
}
|
| 160 |
-
|
| 161 |
-
.stTextArea > div > div > textarea::placeholder {
|
| 162 |
-
color: #9ca3af !important;
|
| 163 |
-
}
|
| 164 |
-
|
| 165 |
-
/* Button Styling */
|
| 166 |
-
.stButton > button {
|
| 167 |
-
background: #6366f1 !important;
|
| 168 |
-
color: white !important;
|
| 169 |
-
border-radius: 8px !important;
|
| 170 |
-
padding: 0.75rem 2rem !important;
|
| 171 |
-
font-size: 1rem !important;
|
| 172 |
-
font-weight: 600 !important;
|
| 173 |
-
transition: all 0.2s ease !important;
|
| 174 |
-
border: none !important;
|
| 175 |
-
width: 100% !important;
|
| 176 |
-
max-width: 300px;
|
| 177 |
-
}
|
| 178 |
-
|
| 179 |
-
.stButton > button:hover {
|
| 180 |
-
background: #4f46e5 !important;
|
| 181 |
-
transform: translateY(-1px) !important;
|
| 182 |
-
}
|
| 183 |
-
|
| 184 |
-
/* Results Section */
|
| 185 |
-
.results-container {
|
| 186 |
-
margin-top: 1rem;
|
| 187 |
-
padding: 1rem;
|
| 188 |
-
border-radius: 8px;
|
| 189 |
-
max-width: 1200px;
|
| 190 |
-
margin-left: auto;
|
| 191 |
-
margin-right: auto;
|
| 192 |
-
}
|
| 193 |
-
|
| 194 |
-
.result-card {
|
| 195 |
-
padding: 1rem;
|
| 196 |
-
border-radius: 8px;
|
| 197 |
-
border-left: 4px solid transparent;
|
| 198 |
-
margin-bottom: 1rem;
|
| 199 |
-
}
|
| 200 |
-
|
| 201 |
-
.fake-news {
|
| 202 |
-
background: #fef2f2;
|
| 203 |
-
border-left-color: #ef4444;
|
| 204 |
-
}
|
| 205 |
-
|
| 206 |
-
.real-news {
|
| 207 |
-
background: #ecfdf5;
|
| 208 |
-
border-left-color: #10b981;
|
| 209 |
-
}
|
| 210 |
-
|
| 211 |
-
.prediction-badge {
|
| 212 |
-
font-weight: 600;
|
| 213 |
-
font-size: 1rem;
|
| 214 |
-
margin-bottom: 0.5rem;
|
| 215 |
-
display: flex;
|
| 216 |
-
align-items: center;
|
| 217 |
-
gap: 0.5rem;
|
| 218 |
-
}
|
| 219 |
-
|
| 220 |
-
.confidence-score {
|
| 221 |
-
font-weight: 600;
|
| 222 |
-
margin-left: auto;
|
| 223 |
-
font-size: 1rem;
|
| 224 |
-
}
|
| 225 |
-
|
| 226 |
-
/* Chart Containers */
|
| 227 |
-
.chart-container {
|
| 228 |
-
padding: 1rem;
|
| 229 |
-
border-radius: 8px;
|
| 230 |
-
margin: 1rem 0;
|
| 231 |
-
max-width: 1200px;
|
| 232 |
-
margin-left: auto;
|
| 233 |
-
margin-right: auto;
|
| 234 |
-
}
|
| 235 |
-
|
| 236 |
-
/* Footer */
|
| 237 |
-
.footer {
|
| 238 |
-
border-top: 1px solid #e5e7eb;
|
| 239 |
-
padding: 1.5rem 0;
|
| 240 |
-
text-align: center;
|
| 241 |
-
max-width: 1200px;
|
| 242 |
-
margin: 2rem auto 0;
|
| 243 |
-
}
|
| 244 |
-
|
| 245 |
-
/* Responsive Design */
|
| 246 |
-
@media (max-width: 1024px) {
|
| 247 |
-
.hero {
|
| 248 |
-
flex-direction: column;
|
| 249 |
-
text-align: center;
|
| 250 |
-
}
|
| 251 |
-
.hero-right img {
|
| 252 |
-
max-width: 80%;
|
| 253 |
-
}
|
| 254 |
-
}
|
| 255 |
-
|
| 256 |
-
@media (max-width: 768px) {
|
| 257 |
-
.header-title {
|
| 258 |
-
font-size: 1.75rem;
|
| 259 |
-
}
|
| 260 |
-
.hero-title {
|
| 261 |
-
font-size: 2rem;
|
| 262 |
-
}
|
| 263 |
-
.hero-text {
|
| 264 |
-
font-size: 0.9rem;
|
| 265 |
-
}
|
| 266 |
-
.about-title {
|
| 267 |
-
font-size: 1.5rem;
|
| 268 |
-
}
|
| 269 |
-
.about-text {
|
| 270 |
-
font-size: 0.9rem;
|
| 271 |
-
}
|
| 272 |
-
}
|
| 273 |
-
|
| 274 |
-
@media (max-width: 480px) {
|
| 275 |
-
.header-title {
|
| 276 |
-
font-size: 1.5rem;
|
| 277 |
-
}
|
| 278 |
-
.hero-title {
|
| 279 |
-
font-size: 1.75rem;
|
| 280 |
-
}
|
| 281 |
-
.hero-text {
|
| 282 |
-
font-size: 0.85rem;
|
| 283 |
-
}
|
| 284 |
-
.about-title {
|
| 285 |
-
font-size: 1.25rem;
|
| 286 |
-
}
|
| 287 |
-
.about-text {
|
| 288 |
-
font-size: 0.85rem;
|
| 289 |
-
}
|
| 290 |
-
}
|
| 291 |
-
</style>
|
| 292 |
-
""", unsafe_allow_html=True)
|
| 293 |
|
| 294 |
@st.cache_resource
|
| 295 |
-
def load_model_and_tokenizer()
|
| 296 |
"""Load the model and tokenizer (cached)."""
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
|
|
|
|
|
|
| 318 |
|
| 319 |
@st.cache_resource
|
| 320 |
-
def get_preprocessor()
|
| 321 |
"""Get the text preprocessor (cached)."""
|
| 322 |
-
|
| 323 |
-
return TextPreprocessor()
|
| 324 |
-
except Exception as e:
|
| 325 |
-
st.error(f"Error initializing preprocessor: {str(e)}")
|
| 326 |
-
return None
|
| 327 |
|
| 328 |
-
def predict_news(text
|
| 329 |
"""Predict if the given news is fake or real."""
|
|
|
|
| 330 |
model, tokenizer = load_model_and_tokenizer()
|
| 331 |
-
if model is None or tokenizer is None:
|
| 332 |
-
return None
|
| 333 |
preprocessor = get_preprocessor()
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
)
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
'
|
| 360 |
-
'
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
st.error(f"Prediction error: {str(e)}")
|
| 368 |
-
return None
|
| 369 |
-
|
| 370 |
-
def plot_confidence(probabilities: dict) -> go.Figure:
|
| 371 |
-
"""Plot prediction confidence with simplified styling."""
|
| 372 |
-
if not probabilities or not isinstance(probabilities, dict):
|
| 373 |
-
return go.Figure()
|
| 374 |
fig = go.Figure(data=[
|
| 375 |
go.Bar(
|
| 376 |
x=list(probabilities.keys()),
|
| 377 |
y=list(probabilities.values()),
|
| 378 |
-
text=[f'{p:.
|
| 379 |
textposition='auto',
|
| 380 |
-
marker=dict(
|
| 381 |
-
color=['#10b981', '#ef4444'],
|
| 382 |
-
line=dict(color='#ffffff', width=1),
|
| 383 |
-
),
|
| 384 |
)
|
| 385 |
])
|
|
|
|
| 386 |
fig.update_layout(
|
| 387 |
-
title=
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
height=300,
|
| 392 |
-
margin=dict(t=60, b=60)
|
| 393 |
)
|
|
|
|
| 394 |
return fig
|
| 395 |
|
| 396 |
-
def plot_attention(text
|
| 397 |
-
"""Plot attention weights
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
if isinstance(attention_weights, (list, np.ndarray)):
|
| 403 |
attention_weights = np.array(attention_weights).flatten()
|
| 404 |
-
|
| 405 |
-
|
|
|
|
|
|
|
| 406 |
fig = go.Figure(data=[
|
| 407 |
go.Bar(
|
| 408 |
x=tokens,
|
| 409 |
y=attention_weights,
|
| 410 |
-
text=
|
| 411 |
textposition='auto',
|
| 412 |
-
marker=dict(color=colors),
|
| 413 |
)
|
| 414 |
])
|
|
|
|
| 415 |
fig.update_layout(
|
| 416 |
-
title=
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
height=350,
|
| 421 |
-
margin=dict(t=60, b=80)
|
| 422 |
)
|
|
|
|
| 423 |
return fig
|
| 424 |
|
| 425 |
def main():
|
| 426 |
-
|
| 427 |
-
st.
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
"""
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
<img src="https://images.pexels.com/photos/267350/pexels-photo-267350.jpeg?auto=compress&cs=tinysrgb&w=500" alt="Fake News Illustration" onerror="this.src='https://via.placeholder.com/500x300.png?text=Fake+News+Illustration'">
|
| 447 |
-
</div>
|
| 448 |
-
</div>
|
| 449 |
-
""", unsafe_allow_html=True)
|
| 450 |
-
|
| 451 |
-
# About Section
|
| 452 |
-
st.markdown("""
|
| 453 |
-
<div class="about-section">
|
| 454 |
-
<h2 class="about-title">About TruthCheck</h2>
|
| 455 |
-
<p class="about-text">
|
| 456 |
-
TruthCheck harnesses a hybrid BERT-BiLSTM model to detect fake news with high precision. Simply paste an article below to analyze its authenticity instantly.
|
| 457 |
-
</p>
|
| 458 |
-
</div>
|
| 459 |
-
""", unsafe_allow_html=True)
|
| 460 |
-
|
| 461 |
-
# Input Section
|
| 462 |
-
st.markdown('<div class="input-container">', unsafe_allow_html=True)
|
| 463 |
news_text = st.text_area(
|
| 464 |
-
"
|
| 465 |
-
height=
|
| 466 |
-
placeholder="Paste your news article here
|
| 467 |
-
key="news_input"
|
| 468 |
)
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
analyze_button = st.button("🔍 Analyze Now", key="analyze_button")
|
| 475 |
-
|
| 476 |
-
if analyze_button:
|
| 477 |
-
if news_text and len(news_text.strip()) > 10:
|
| 478 |
-
with st.spinner("Analyzing article..."):
|
| 479 |
result = predict_news(news_text)
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
else:
|
| 511 |
-
st.
|
| 512 |
-
|
| 513 |
-
# Footer
|
| 514 |
-
st.markdown("---")
|
| 515 |
-
st.markdown(
|
| 516 |
-
'<p style="text-align: center; font-weight: 600; font-size: 16px;">💻 Developed with ❤️ using Streamlit | © 2025</p>',
|
| 517 |
-
unsafe_allow_html=True
|
| 518 |
-
)
|
| 519 |
-
|
| 520 |
-
st.markdown('</div>', unsafe_allow_html=True) # Close main-container
|
| 521 |
|
| 522 |
if __name__ == "__main__":
|
| 523 |
-
main()
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
from pathlib import Path
|
| 6 |
import sys
|
| 7 |
+
import plotly.express as px
|
| 8 |
import plotly.graph_objects as go
|
| 9 |
from transformers import BertTokenizer
|
| 10 |
import nltk
|
| 11 |
|
| 12 |
# Download required NLTK data
|
| 13 |
+
try:
|
| 14 |
+
nltk.data.find('tokenizers/punkt')
|
| 15 |
+
except LookupError:
|
| 16 |
+
nltk.download('punkt')
|
| 17 |
+
try:
|
| 18 |
+
nltk.data.find('corpora/stopwords')
|
| 19 |
+
except LookupError:
|
| 20 |
+
nltk.download('stopwords')
|
| 21 |
+
try:
|
| 22 |
+
nltk.data.find('tokenizers/punkt_tab')
|
| 23 |
+
except LookupError:
|
| 24 |
+
nltk.download('punkt_tab')
|
| 25 |
+
try:
|
| 26 |
+
nltk.data.find('corpora/wordnet')
|
| 27 |
+
except LookupError:
|
| 28 |
+
nltk.download('wordnet')
|
| 29 |
|
| 30 |
# Add project root to Python path
|
| 31 |
project_root = Path(__file__).parent.parent
|
| 32 |
sys.path.append(str(project_root))
|
| 33 |
|
| 34 |
from src.models.hybrid_model import HybridFakeNewsDetector
|
| 35 |
+
from src.config.config import *
|
| 36 |
from src.data.preprocessor import TextPreprocessor
|
| 37 |
|
| 38 |
+
# Page config is set in main app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
@st.cache_resource
|
| 41 |
+
def load_model_and_tokenizer():
|
| 42 |
"""Load the model and tokenizer (cached)."""
|
| 43 |
+
# Initialize model
|
| 44 |
+
model = HybridFakeNewsDetector(
|
| 45 |
+
bert_model_name=BERT_MODEL_NAME,
|
| 46 |
+
lstm_hidden_size=LSTM_HIDDEN_SIZE,
|
| 47 |
+
lstm_num_layers=LSTM_NUM_LAYERS,
|
| 48 |
+
dropout_rate=DROPOUT_RATE
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# Load trained weights
|
| 52 |
+
state_dict = torch.load(SAVED_MODELS_DIR / "final_model.pt", map_location=torch.device('cpu'))
|
| 53 |
+
|
| 54 |
+
# Filter out unexpected keys
|
| 55 |
+
model_state_dict = model.state_dict()
|
| 56 |
+
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
|
| 57 |
+
|
| 58 |
+
# Load the filtered state dict
|
| 59 |
+
model.load_state_dict(filtered_state_dict, strict=False)
|
| 60 |
+
model.eval()
|
| 61 |
+
|
| 62 |
+
# Initialize tokenizer
|
| 63 |
+
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
|
| 64 |
+
|
| 65 |
+
return model, tokenizer
|
| 66 |
|
| 67 |
@st.cache_resource
|
| 68 |
+
def get_preprocessor():
|
| 69 |
"""Get the text preprocessor (cached)."""
|
| 70 |
+
return TextPreprocessor()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
def predict_news(text):
|
| 73 |
"""Predict if the given news is fake or real."""
|
| 74 |
+
# Get model, tokenizer, and preprocessor from cache
|
| 75 |
model, tokenizer = load_model_and_tokenizer()
|
|
|
|
|
|
|
| 76 |
preprocessor = get_preprocessor()
|
| 77 |
+
|
| 78 |
+
# Preprocess text
|
| 79 |
+
processed_text = preprocessor.preprocess_text(text)
|
| 80 |
+
|
| 81 |
+
# Tokenize
|
| 82 |
+
encoding = tokenizer.encode_plus(
|
| 83 |
+
processed_text,
|
| 84 |
+
add_special_tokens=True,
|
| 85 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
| 86 |
+
padding='max_length',
|
| 87 |
+
truncation=True,
|
| 88 |
+
return_attention_mask=True,
|
| 89 |
+
return_tensors='pt'
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Get prediction
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
outputs = model(
|
| 95 |
+
encoding['input_ids'],
|
| 96 |
+
encoding['attention_mask']
|
| 97 |
)
|
| 98 |
+
probabilities = torch.softmax(outputs['logits'], dim=1)
|
| 99 |
+
prediction = torch.argmax(outputs['logits'], dim=1)
|
| 100 |
+
attention_weights = outputs['attention_weights']
|
| 101 |
+
|
| 102 |
+
# Convert attention weights to numpy and get the first sequence
|
| 103 |
+
attention_weights_np = attention_weights[0].cpu().numpy()
|
| 104 |
+
|
| 105 |
+
return {
|
| 106 |
+
'prediction': prediction.item(),
|
| 107 |
+
'label': 'FAKE' if prediction.item() == 1 else 'REAL',
|
| 108 |
+
'confidence': torch.max(probabilities, dim=1)[0].item(),
|
| 109 |
+
'probabilities': {
|
| 110 |
+
'REAL': probabilities[0][0].item(),
|
| 111 |
+
'FAKE': probabilities[0][1].item()
|
| 112 |
+
},
|
| 113 |
+
'attention_weights': attention_weights_np
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
def plot_confidence(probabilities):
|
| 117 |
+
"""Plot prediction confidence."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
fig = go.Figure(data=[
|
| 119 |
go.Bar(
|
| 120 |
x=list(probabilities.keys()),
|
| 121 |
y=list(probabilities.values()),
|
| 122 |
+
text=[f'{p:.2%}' for p in probabilities.values()],
|
| 123 |
textposition='auto',
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
)
|
| 125 |
])
|
| 126 |
+
|
| 127 |
fig.update_layout(
|
| 128 |
+
title='Prediction Confidence',
|
| 129 |
+
xaxis_title='Class',
|
| 130 |
+
yaxis_title='Probability',
|
| 131 |
+
yaxis_range=[0, 1]
|
|
|
|
|
|
|
| 132 |
)
|
| 133 |
+
|
| 134 |
return fig
|
| 135 |
|
| 136 |
+
def plot_attention(text, attention_weights):
|
| 137 |
+
"""Plot attention weights."""
|
| 138 |
+
tokens = text.split()
|
| 139 |
+
attention_weights = attention_weights[:len(tokens)] # Truncate to match tokens
|
| 140 |
+
|
| 141 |
+
# Ensure attention weights are in the correct format
|
| 142 |
if isinstance(attention_weights, (list, np.ndarray)):
|
| 143 |
attention_weights = np.array(attention_weights).flatten()
|
| 144 |
+
|
| 145 |
+
# Format weights for display
|
| 146 |
+
formatted_weights = [f'{float(w):.2f}' for w in attention_weights]
|
| 147 |
+
|
| 148 |
fig = go.Figure(data=[
|
| 149 |
go.Bar(
|
| 150 |
x=tokens,
|
| 151 |
y=attention_weights,
|
| 152 |
+
text=formatted_weights,
|
| 153 |
textposition='auto',
|
|
|
|
| 154 |
)
|
| 155 |
])
|
| 156 |
+
|
| 157 |
fig.update_layout(
|
| 158 |
+
title='Attention Weights',
|
| 159 |
+
xaxis_title='Tokens',
|
| 160 |
+
yaxis_title='Attention Weight',
|
| 161 |
+
xaxis_tickangle=45
|
|
|
|
|
|
|
| 162 |
)
|
| 163 |
+
|
| 164 |
return fig
|
| 165 |
|
| 166 |
def main():
|
| 167 |
+
st.title("📰 Fake News Detection System")
|
| 168 |
+
st.write("""
|
| 169 |
+
This application uses a hybrid deep learning model (BERT + BiLSTM + Attention)
|
| 170 |
+
to detect fake news articles. Enter a news article below to analyze it.
|
| 171 |
+
""")
|
| 172 |
+
|
| 173 |
+
# Sidebar
|
| 174 |
+
st.sidebar.title("About")
|
| 175 |
+
st.sidebar.info("""
|
| 176 |
+
|
| 177 |
+
The model combines:
|
| 178 |
+
- BERT for contextual embeddings
|
| 179 |
+
- BiLSTM for sequence modeling
|
| 180 |
+
- Attention mechanism for interpretability
|
| 181 |
+
""")
|
| 182 |
+
|
| 183 |
+
# Main content
|
| 184 |
+
st.header("News Analysis")
|
| 185 |
+
|
| 186 |
+
# Text input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
news_text = st.text_area(
|
| 188 |
+
"Enter the news article to analyze:",
|
| 189 |
+
height=200,
|
| 190 |
+
placeholder="Paste your news article here..."
|
|
|
|
| 191 |
)
|
| 192 |
+
|
| 193 |
+
if st.button("Analyze"):
|
| 194 |
+
if news_text:
|
| 195 |
+
with st.spinner("Analyzing the news article..."):
|
| 196 |
+
# Get prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
result = predict_news(news_text)
|
| 198 |
+
|
| 199 |
+
# Display result
|
| 200 |
+
col1, col2 = st.columns(2)
|
| 201 |
+
|
| 202 |
+
with col1:
|
| 203 |
+
st.subheader("Prediction")
|
| 204 |
+
if result['label'] == 'FAKE':
|
| 205 |
+
st.error(f"🔴 This news is likely FAKE (Confidence: {result['confidence']:.2%})")
|
| 206 |
+
else:
|
| 207 |
+
st.success(f"🟢 This news is likely REAL (Confidence: {result['confidence']:.2%})")
|
| 208 |
+
|
| 209 |
+
with col2:
|
| 210 |
+
st.subheader("Confidence Scores")
|
| 211 |
+
st.plotly_chart(plot_confidence(result['probabilities']), use_container_width=True)
|
| 212 |
+
|
| 213 |
+
# Show attention visualization
|
| 214 |
+
st.subheader("Attention Analysis")
|
| 215 |
+
st.write("""
|
| 216 |
+
The attention weights show which parts of the text the model focused on
|
| 217 |
+
while making its prediction. Higher weights indicate more important tokens.
|
| 218 |
+
""")
|
| 219 |
+
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
| 220 |
+
|
| 221 |
+
# Show model explanation
|
| 222 |
+
st.subheader("Model Explanation")
|
| 223 |
+
if result['label'] == 'FAKE':
|
| 224 |
+
st.write("""
|
| 225 |
+
The model identified this as fake news based on:
|
| 226 |
+
- Linguistic patterns typical of fake news
|
| 227 |
+
- Inconsistencies in the content
|
| 228 |
+
- Attention weights on suspicious phrases
|
| 229 |
+
""")
|
| 230 |
+
else:
|
| 231 |
+
st.write("""
|
| 232 |
+
The model identified this as real news based on:
|
| 233 |
+
- Credible language patterns
|
| 234 |
+
- Consistent information
|
| 235 |
+
- Attention weights on factual statements
|
| 236 |
+
""")
|
| 237 |
else:
|
| 238 |
+
st.warning("Please enter a news article to analyze.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
if __name__ == "__main__":
|
| 241 |
+
main()
|