Spaces:
Runtime error
Runtime error
| import torch | |
| from numba import njit | |
| from modules import shared | |
| def process_llamacpp_cache(model, new_sequence, past_sequence): | |
| if len(past_sequence) == 0 or len(new_sequence) == 0: | |
| return past_sequence | |
| i1, i2, j1, j2 = find_longest_common_substring_indices(past_sequence, new_sequence) | |
| overlap_length = i2 - i1 + 1 | |
| # Do StreamingLLM if i1 > 0 (ie the longest common subsequence is not a prefix) | |
| # and the overlap length is sufficiently long. | |
| if i1 > 0 and overlap_length > 0.2 * len(new_sequence): | |
| new_sequence = torch.tensor(new_sequence) | |
| past_sequence = torch.tensor(past_sequence) | |
| prefix_length = find_prefix_length(past_sequence[:i1], new_sequence[:j1]) | |
| sink_length = max(prefix_length, shared.args.attention_sink_size) | |
| removed_length = i1 - sink_length | |
| if removed_length <= 0: | |
| return past_sequence.tolist() | |
| matching_prefix = past_sequence[:prefix_length] | |
| removed_chunk = past_sequence[sink_length:i1] | |
| overlapping_sequence = new_sequence[j1:j2 + 1] | |
| added_chunk = new_sequence[j2 + 1:] | |
| # print(past_sequence.tolist()) | |
| # print(new_sequence.tolist()) | |
| print() | |
| print('MATCHING PREFIX=', repr(shared.tokenizer.decode(matching_prefix))) | |
| print('ADDED CHUNK=', repr(shared.tokenizer.decode(added_chunk))) | |
| print('REMOVED CHUNK=', repr(shared.tokenizer.decode(removed_chunk))) | |
| print('REMOVED LENGTH=', removed_length) | |
| print() | |
| # Remove interval [sink_length, sink_length + removed_length) from the context | |
| # Update model.n_tokens | |
| model._ctx.kv_cache_seq_rm(0, sink_length, sink_length + removed_length) | |
| model._ctx.kv_cache_seq_shift(0, sink_length + removed_length, -1, -removed_length) | |
| new_sequence = new_sequence.tolist() | |
| model.input_ids[:j2 + 1] = new_sequence[:j2 + 1] | |
| model.n_tokens = j2 + 1 | |
| return new_sequence[:j2 + 1] | |
| else: | |
| return past_sequence | |
| def find_prefix_length(past_seq, seq_tensor): | |
| ''' | |
| Given two torch tensors, finds the length of the longest | |
| common prefix between the two. | |
| ''' | |
| min_length = min(past_seq.shape[0], seq_tensor.shape[0]) | |
| indices = torch.nonzero(~torch.eq(past_seq[:min_length], seq_tensor[:min_length])) | |
| if len(indices) > 0: | |
| prefix_length = indices[0].item() | |
| else: | |
| prefix_length = min_length | |
| return prefix_length | |
| def find_longest_common_substring_indices(list1, list2): | |
| ''' | |
| Given two lists, solves the Longest Common Substring problem. | |
| It returns the indices where the substring starts and ends in | |
| s1 and s2. | |
| Example: | |
| ir, jr, ir2, jr2 = find_longest_common_substring_indices(s1, s2) | |
| print(s1[ir:jr + 1]) | |
| print(s2[ir2:jr2 + 1]) | |
| Adapted from | |
| https://rosettacode.org/wiki/Longest_common_substring#Python | |
| ''' | |
| len_list1, len_list2 = len(list1), len(list2) | |
| start_index_list1, end_index_list1 = 0, -1 | |
| start_index_list2, end_index_list2 = 0, -1 | |
| # for index1 in tqdm(range(0, len_list1), desc="StreamingLLM prompt comparison", leave=False): | |
| for index1 in range(0, len_list1): | |
| try: | |
| index2 = list2.index(list1[index1]) | |
| except: | |
| continue | |
| while index2 >= 0: | |
| temp_index1, temp_index2 = index1, index2 | |
| while temp_index1 < len_list1 and temp_index2 < len_list2 and list2[temp_index2] == list1[temp_index1]: | |
| if temp_index1 - index1 >= end_index_list1 - start_index_list1: | |
| start_index_list1, end_index_list1 = index1, temp_index1 | |
| start_index_list2, end_index_list2 = index2, temp_index2 | |
| temp_index1 += 1 | |
| temp_index2 += 1 | |
| try: | |
| index2 = list2.index(list1[index1], index2 + 1) | |
| except: | |
| break | |
| return start_index_list1, end_index_list1, start_index_list2, end_index_list2 | |