import os import gradio as gr import whisper model = whisper.load_model("small") print(model.device) def inference(audio): audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(model.device) _, probs = model.detect_language(mel) options = whisper.DecodingOptions(fp16 = False) result = whisper.decode(model, mel, options) print(result.text) return result.text block = gr.Blocks() with block: with gr.Group(): with gr.Box(): with gr.Row(): audio = gr.Audio( label="Input Audio", source="microphone", type="filepath" ) btn = gr.Button("Transcribe") text = gr.Textbox() btn.click(inference, inputs=[audio], outputs=[text], api_name="transcribe") block.launch()