Spaces:
Runtime error
Runtime error
Update app3.py
Browse files
app3.py
CHANGED
|
@@ -16,16 +16,152 @@ from langchain_community.llms import HuggingFaceEndpoint
|
|
| 16 |
from langchain.memory import ConversationBufferMemory
|
| 17 |
from sentence_transformers import SentenceTransformer, util
|
| 18 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Constants and setup
|
| 21 |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
|
| 22 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
| 23 |
api_token = os.getenv("HF_TOKEN")
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# Initialize sentence transformer for evaluation
|
| 26 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
|
| 30 |
splitters = {
|
| 31 |
"recursive": RecursiveCharacterTextSplitter(
|
|
@@ -43,105 +179,38 @@ def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int
|
|
| 43 |
}
|
| 44 |
return splitters.get(strategy)
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
embeddings1 = sentence_model.encode([text1], convert_to_tensor=True)
|
| 49 |
-
embeddings2 = sentence_model.encode([text2], convert_to_tensor=True)
|
| 50 |
-
similarity = util.pytorch_cos_sim(embeddings1, embeddings2)
|
| 51 |
-
return float(similarity[0][0])
|
| 52 |
-
|
| 53 |
-
def evaluate_response(question: str, answer: str, ground_truth: str, contexts: List[str]) -> Dict[str, float]:
|
| 54 |
-
# Answer similarity with ground truth
|
| 55 |
-
answer_similarity = calculate_semantic_similarity(answer, ground_truth)
|
| 56 |
-
|
| 57 |
-
# Context relevance - average similarity between question and contexts
|
| 58 |
-
context_scores = [calculate_semantic_similarity(question, ctx) for ctx in contexts]
|
| 59 |
-
context_relevance = np.mean(context_scores)
|
| 60 |
-
|
| 61 |
-
# Answer relevance - similarity between question and answer
|
| 62 |
-
answer_relevance = calculate_semantic_similarity(question, answer)
|
| 63 |
-
|
| 64 |
-
return {
|
| 65 |
-
"answer_similarity": answer_similarity,
|
| 66 |
-
"context_relevance": context_relevance,
|
| 67 |
-
"answer_relevance": answer_relevance,
|
| 68 |
-
"average_score": np.mean([answer_similarity, context_relevance, answer_relevance])
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
-
# Load and split PDF document
|
| 72 |
-
def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"):
|
| 73 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
| 74 |
pages = []
|
| 75 |
for loader in loaders:
|
| 76 |
pages.extend(loader.load())
|
| 77 |
|
| 78 |
-
text_splitter = get_text_splitter(splitting_strategy)
|
| 79 |
doc_splits = text_splitter.split_documents(pages)
|
| 80 |
return doc_splits
|
| 81 |
|
| 82 |
-
# Vector database creation functions
|
| 83 |
-
def create_faiss_db(splits, embeddings):
|
| 84 |
-
return FAISS.from_documents(splits, embeddings)
|
| 85 |
-
|
| 86 |
-
def create_chroma_db(splits, embeddings):
|
| 87 |
-
return Chroma.from_documents(splits, embeddings)
|
| 88 |
-
|
| 89 |
-
def create_qdrant_db(splits, embeddings):
|
| 90 |
-
return Qdrant.from_documents(
|
| 91 |
-
splits,
|
| 92 |
-
embeddings,
|
| 93 |
-
location=":memory:",
|
| 94 |
-
collection_name="pdf_docs"
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
def create_db(splits, db_choice: str = "faiss"):
|
| 98 |
embeddings = HuggingFaceEmbeddings()
|
| 99 |
db_creators = {
|
| 100 |
-
"faiss":
|
| 101 |
-
"chroma":
|
| 102 |
-
"qdrant":
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
dataset = load_dataset("explodinggradients/fiqa", split="test", trust_remote_code=True)
|
| 108 |
-
return dataset
|
| 109 |
-
|
| 110 |
-
def evaluate_rag_pipeline(qa_chain, dataset):
|
| 111 |
-
# Sample a few examples for evaluation
|
| 112 |
-
eval_samples = dataset.select(range(5))
|
| 113 |
-
|
| 114 |
-
results = []
|
| 115 |
-
for sample in eval_samples:
|
| 116 |
-
question = sample["question"]
|
| 117 |
-
|
| 118 |
-
# Get response from the chain
|
| 119 |
-
response = qa_chain.invoke({
|
| 120 |
-
"question": question,
|
| 121 |
-
"chat_history": []
|
| 122 |
-
})
|
| 123 |
-
|
| 124 |
-
# Evaluate response
|
| 125 |
-
eval_result = evaluate_response(
|
| 126 |
-
question=question,
|
| 127 |
-
answer=response["answer"],
|
| 128 |
-
ground_truth=sample["answer"],
|
| 129 |
-
contexts=[doc.page_content for doc in response["source_documents"]]
|
| 130 |
)
|
| 131 |
-
|
| 132 |
-
results.append(eval_result)
|
| 133 |
-
|
| 134 |
-
# Calculate average scores across all samples
|
| 135 |
-
avg_results = {
|
| 136 |
-
metric: float(np.mean([r[metric] for r in results]))
|
| 137 |
-
for metric in results[0].keys()
|
| 138 |
}
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
-
# Initialize langchain LLM chain
|
| 143 |
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
| 144 |
-
# Get the full model name from the index
|
| 145 |
llm_model = list_llm[llm_choice]
|
| 146 |
|
| 147 |
llm = HuggingFaceEndpoint(
|
|
@@ -149,8 +218,7 @@ def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, p
|
|
| 149 |
huggingfacehub_api_token=api_token,
|
| 150 |
temperature=temperature,
|
| 151 |
max_new_tokens=max_tokens,
|
| 152 |
-
top_k=top_k
|
| 153 |
-
model=llm_model # Add model parameter
|
| 154 |
)
|
| 155 |
|
| 156 |
memory = ConversationBufferMemory(
|
|
@@ -163,162 +231,278 @@ def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, p
|
|
| 163 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 164 |
llm,
|
| 165 |
retriever=retriever,
|
| 166 |
-
chain_type="stuff",
|
| 167 |
memory=memory,
|
| 168 |
-
return_source_documents=True
|
| 169 |
-
verbose=False,
|
| 170 |
)
|
| 171 |
return qa_chain, "LLM initialized successfully!"
|
| 172 |
|
| 173 |
-
def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()):
|
| 174 |
-
list_file_path = [x.name for x in list_file_obj if x is not None]
|
| 175 |
-
doc_splits = load_doc(list_file_path, splitting_strategy)
|
| 176 |
-
vector_db = create_db(doc_splits, db_choice)
|
| 177 |
-
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!"
|
| 178 |
-
|
| 179 |
-
def format_chat_history(message, chat_history):
|
| 180 |
-
formatted_chat_history = []
|
| 181 |
-
for user_message, bot_message in chat_history:
|
| 182 |
-
formatted_chat_history.append(f"User: {user_message}")
|
| 183 |
-
formatted_chat_history.append(f"Assistant: {bot_message}")
|
| 184 |
-
return formatted_chat_history
|
| 185 |
-
|
| 186 |
def conversation(qa_chain, message, history):
|
| 187 |
-
|
| 188 |
response = qa_chain.invoke({
|
| 189 |
"question": message,
|
| 190 |
-
"chat_history":
|
| 191 |
})
|
| 192 |
|
| 193 |
response_answer = response["answer"]
|
| 194 |
-
if
|
| 195 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
def demo():
|
|
|
|
|
|
|
| 211 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
|
| 212 |
vector_db = gr.State()
|
| 213 |
qa_chain = gr.State()
|
| 214 |
|
| 215 |
-
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot</h1></center>")
|
| 216 |
-
gr.Markdown("""<b>Query your PDF documents with advanced RAG capabilities!</b>""")
|
| 217 |
|
| 218 |
-
with gr.
|
| 219 |
-
|
| 220 |
-
|
| 221 |
with gr.Row():
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
with gr.Row():
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
| 226 |
["recursive", "fixed", "token"],
|
| 227 |
label="Text Splitting Strategy",
|
| 228 |
value="recursive"
|
| 229 |
)
|
| 230 |
-
|
| 231 |
-
["
|
| 232 |
-
label="
|
| 233 |
-
value="
|
| 234 |
)
|
| 235 |
|
| 236 |
with gr.Row():
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
with gr.Row():
|
| 241 |
-
db_progress = gr.Textbox(value="Not initialized", show_label=False)
|
| 242 |
-
evaluation_results = gr.JSON(label="Evaluation Results")
|
| 243 |
-
|
| 244 |
-
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
|
| 245 |
-
with gr.Row():
|
| 246 |
-
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
|
| 247 |
-
|
| 248 |
-
with gr.Row():
|
| 249 |
-
with gr.Accordion("LLM input parameters", open=False):
|
| 250 |
-
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature")
|
| 251 |
-
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens")
|
| 252 |
-
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k")
|
| 253 |
-
|
| 254 |
-
with gr.Row():
|
| 255 |
-
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
|
| 256 |
-
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
|
| 257 |
-
|
| 258 |
-
with gr.Column(scale=200):
|
| 259 |
-
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
| 260 |
-
chatbot = gr.Chatbot(height=505)
|
| 261 |
-
|
| 262 |
-
with gr.Accordion("Relevant context from the source document", open=False):
|
| 263 |
-
with gr.Row():
|
| 264 |
-
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
| 265 |
-
source1_page = gr.Number(label="Page", scale=1)
|
| 266 |
-
with gr.Row():
|
| 267 |
-
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
| 268 |
-
source2_page = gr.Number(label="Page", scale=1)
|
| 269 |
-
with gr.Row():
|
| 270 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
| 271 |
-
source3_page = gr.Number(label="Page", scale=1)
|
| 272 |
-
|
| 273 |
-
with gr.Row():
|
| 274 |
-
msg = gr.Textbox(placeholder="Ask a question", container=True)
|
| 275 |
-
with gr.Row():
|
| 276 |
-
submit_btn = gr.Button("Submit")
|
| 277 |
-
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
|
| 278 |
-
|
| 279 |
# Event handlers
|
| 280 |
db_btn.click(
|
| 281 |
initialize_database,
|
| 282 |
-
inputs=[document, splitting_strategy, db_choice],
|
| 283 |
outputs=[vector_db, db_progress]
|
| 284 |
)
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
inputs=[
|
| 289 |
-
outputs=[evaluation_results]
|
| 290 |
-
)
|
| 291 |
-
|
| 292 |
-
qachain_btn.click(
|
| 293 |
-
initialize_llmchain, # Fixed function name here
|
| 294 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
| 295 |
outputs=[qa_chain, llm_progress]
|
| 296 |
-
).then(
|
| 297 |
-
lambda: [None, "", 0, "", 0, "", 0],
|
| 298 |
-
inputs=None,
|
| 299 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
| 300 |
-
queue=False
|
| 301 |
)
|
| 302 |
|
| 303 |
-
msg.submit(
|
|
|
|
| 304 |
inputs=[qa_chain, msg, chatbot],
|
| 305 |
-
outputs=[qa_chain, msg, chatbot,
|
| 306 |
-
queue=False
|
| 307 |
)
|
| 308 |
|
| 309 |
-
submit_btn.click(
|
|
|
|
| 310 |
inputs=[qa_chain, msg, chatbot],
|
| 311 |
-
outputs=[qa_chain, msg, chatbot,
|
| 312 |
-
queue=False
|
| 313 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
clear_btn.click(
|
| 316 |
lambda: [None, "", 0, "", 0, "", 0],
|
| 317 |
-
|
| 318 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
| 319 |
-
queue=False
|
| 320 |
)
|
| 321 |
-
|
|
|
|
| 322 |
demo.queue().launch(debug=True)
|
| 323 |
|
| 324 |
if __name__ == "__main__":
|
|
|
|
| 16 |
from langchain.memory import ConversationBufferMemory
|
| 17 |
from sentence_transformers import SentenceTransformer, util
|
| 18 |
import torch
|
| 19 |
+
from ragas import evaluate
|
| 20 |
+
from ragas.metrics import (
|
| 21 |
+
ContextRecall,
|
| 22 |
+
AnswerRelevancy,
|
| 23 |
+
Faithfulness,
|
| 24 |
+
ContextPrecision
|
| 25 |
+
)
|
| 26 |
+
import pandas as pd
|
| 27 |
|
| 28 |
# Constants and setup
|
| 29 |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
|
| 30 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
| 31 |
api_token = os.getenv("HF_TOKEN")
|
| 32 |
|
| 33 |
+
CHUNK_SIZES = {
|
| 34 |
+
"small": {"recursive": 512, "fixed": 512, "token": 256},
|
| 35 |
+
"medium": {"recursive": 1024, "fixed": 1024, "token": 512}
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
# Initialize sentence transformer for evaluation
|
| 39 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 40 |
|
| 41 |
+
class RAGEvaluator:
|
| 42 |
+
def __init__(self):
|
| 43 |
+
self.datasets = {
|
| 44 |
+
"squad": "squad_v2",
|
| 45 |
+
"msmarco": "ms_marco"
|
| 46 |
+
}
|
| 47 |
+
self.current_dataset = None
|
| 48 |
+
self.test_samples = []
|
| 49 |
+
|
| 50 |
+
def load_dataset(self, dataset_name: str, num_samples: int = 10):
|
| 51 |
+
"""Load a smaller subset of questions with proper error handling"""
|
| 52 |
+
try:
|
| 53 |
+
if dataset_name == "squad":
|
| 54 |
+
dataset = load_dataset("squad_v2", split="validation")
|
| 55 |
+
# Select diverse questions
|
| 56 |
+
samples = dataset.select(range(0, 1000, 100))[:num_samples]
|
| 57 |
+
|
| 58 |
+
self.test_samples = []
|
| 59 |
+
for sample in samples:
|
| 60 |
+
# Check if answers exist and are not empty
|
| 61 |
+
if sample.get("answers") and isinstance(sample["answers"], dict) and sample["answers"].get("text"):
|
| 62 |
+
self.test_samples.append({
|
| 63 |
+
"question": sample["question"],
|
| 64 |
+
"ground_truth": sample["answers"]["text"][0],
|
| 65 |
+
"context": sample["context"]
|
| 66 |
+
})
|
| 67 |
+
|
| 68 |
+
elif dataset_name == "msmarco":
|
| 69 |
+
dataset = load_dataset("ms_marco", "v2.1", split="dev")
|
| 70 |
+
samples = dataset.select(range(0, 1000, 100))[:num_samples]
|
| 71 |
+
|
| 72 |
+
self.test_samples = []
|
| 73 |
+
for sample in samples:
|
| 74 |
+
# Check for valid answers
|
| 75 |
+
if sample.get("answers") and sample["answers"]:
|
| 76 |
+
self.test_samples.append({
|
| 77 |
+
"question": sample["query"],
|
| 78 |
+
"ground_truth": sample["answers"][0],
|
| 79 |
+
"context": sample["passages"][0]["passage_text"]
|
| 80 |
+
if isinstance(sample["passages"], list)
|
| 81 |
+
else sample["passages"]["passage_text"][0]
|
| 82 |
+
})
|
| 83 |
+
|
| 84 |
+
self.current_dataset = dataset_name
|
| 85 |
+
|
| 86 |
+
# Return dataset info
|
| 87 |
+
return {
|
| 88 |
+
"dataset": dataset_name,
|
| 89 |
+
"num_samples": len(self.test_samples),
|
| 90 |
+
"sample_questions": [s["question"] for s in self.test_samples[:3]],
|
| 91 |
+
"status": "success"
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print(f"Error loading dataset: {str(e)}")
|
| 96 |
+
return {
|
| 97 |
+
"dataset": dataset_name,
|
| 98 |
+
"error": str(e),
|
| 99 |
+
"status": "failed"
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
def evaluate_configuration(self, vector_db, qa_chain, splitting_strategy: str, chunk_size: str) -> Dict:
|
| 103 |
+
"""Evaluate with progress tracking and error handling"""
|
| 104 |
+
if not self.test_samples:
|
| 105 |
+
return {"error": "No dataset loaded"}
|
| 106 |
+
|
| 107 |
+
results = []
|
| 108 |
+
total_questions = len(self.test_samples)
|
| 109 |
+
|
| 110 |
+
# Add progress tracking
|
| 111 |
+
for i, sample in enumerate(self.test_samples):
|
| 112 |
+
print(f"Evaluating question {i+1}/{total_questions}")
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
response = qa_chain.invoke({
|
| 116 |
+
"question": sample["question"],
|
| 117 |
+
"chat_history": []
|
| 118 |
+
})
|
| 119 |
+
|
| 120 |
+
results.append({
|
| 121 |
+
"question": sample["question"],
|
| 122 |
+
"answer": response["answer"],
|
| 123 |
+
"contexts": [doc.page_content for doc in response["source_documents"]],
|
| 124 |
+
"ground_truths": [sample["ground_truth"]]
|
| 125 |
+
})
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print(f"Error processing question {i+1}: {str(e)}")
|
| 128 |
+
continue
|
| 129 |
+
|
| 130 |
+
if not results:
|
| 131 |
+
return {
|
| 132 |
+
"configuration": f"{splitting_strategy}_{chunk_size}",
|
| 133 |
+
"error": "No successful evaluations",
|
| 134 |
+
"questions_evaluated": 0
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
try:
|
| 138 |
+
# Calculate RAGAS metrics
|
| 139 |
+
eval_dataset = Dataset.from_list(results)
|
| 140 |
+
metrics = [ContextRecall(), AnswerRelevancy(), Faithfulness(), ContextPrecision()]
|
| 141 |
+
scores = evaluate(eval_dataset, metrics=metrics)
|
| 142 |
+
|
| 143 |
+
return {
|
| 144 |
+
"configuration": f"{splitting_strategy}_{chunk_size}",
|
| 145 |
+
"questions_evaluated": len(results),
|
| 146 |
+
"context_recall": float(scores['context_recall']),
|
| 147 |
+
"answer_relevancy": float(scores['answer_relevancy']),
|
| 148 |
+
"faithfulness": float(scores['faithfulness']),
|
| 149 |
+
"context_precision": float(scores['context_precision']),
|
| 150 |
+
"average_score": float(np.mean([
|
| 151 |
+
scores['context_recall'],
|
| 152 |
+
scores['answer_relevancy'],
|
| 153 |
+
scores['faithfulness'],
|
| 154 |
+
scores['context_precision']
|
| 155 |
+
]))
|
| 156 |
+
}
|
| 157 |
+
except Exception as e:
|
| 158 |
+
return {
|
| 159 |
+
"configuration": f"{splitting_strategy}_{chunk_size}",
|
| 160 |
+
"error": str(e),
|
| 161 |
+
"questions_evaluated": len(results)
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
# Text splitting and database functions
|
| 165 |
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
|
| 166 |
splitters = {
|
| 167 |
"recursive": RecursiveCharacterTextSplitter(
|
|
|
|
| 179 |
}
|
| 180 |
return splitters.get(strategy)
|
| 181 |
|
| 182 |
+
def load_doc(list_file_path: List[str], splitting_strategy: str, chunk_size: str):
|
| 183 |
+
chunk_size_value = CHUNK_SIZES[chunk_size][splitting_strategy]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
| 185 |
pages = []
|
| 186 |
for loader in loaders:
|
| 187 |
pages.extend(loader.load())
|
| 188 |
|
| 189 |
+
text_splitter = get_text_splitter(splitting_strategy, chunk_size_value)
|
| 190 |
doc_splits = text_splitter.split_documents(pages)
|
| 191 |
return doc_splits
|
| 192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
def create_db(splits, db_choice: str = "faiss"):
|
| 194 |
embeddings = HuggingFaceEmbeddings()
|
| 195 |
db_creators = {
|
| 196 |
+
"faiss": lambda: FAISS.from_documents(splits, embeddings),
|
| 197 |
+
"chroma": lambda: Chroma.from_documents(splits, embeddings),
|
| 198 |
+
"qdrant": lambda: Qdrant.from_documents(
|
| 199 |
+
splits,
|
| 200 |
+
embeddings,
|
| 201 |
+
location=":memory:",
|
| 202 |
+
collection_name="pdf_docs"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
}
|
| 205 |
+
return db_creators[db_choice]()
|
| 206 |
+
|
| 207 |
+
def initialize_database(list_file_obj, splitting_strategy, chunk_size, db_choice, progress=gr.Progress()):
|
| 208 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
| 209 |
+
doc_splits = load_doc(list_file_path, splitting_strategy, chunk_size)
|
| 210 |
+
vector_db = create_db(doc_splits, db_choice)
|
| 211 |
+
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!"
|
| 212 |
|
|
|
|
| 213 |
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
|
| 214 |
llm_model = list_llm[llm_choice]
|
| 215 |
|
| 216 |
llm = HuggingFaceEndpoint(
|
|
|
|
| 218 |
huggingfacehub_api_token=api_token,
|
| 219 |
temperature=temperature,
|
| 220 |
max_new_tokens=max_tokens,
|
| 221 |
+
top_k=top_k
|
|
|
|
| 222 |
)
|
| 223 |
|
| 224 |
memory = ConversationBufferMemory(
|
|
|
|
| 231 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 232 |
llm,
|
| 233 |
retriever=retriever,
|
|
|
|
| 234 |
memory=memory,
|
| 235 |
+
return_source_documents=True
|
|
|
|
| 236 |
)
|
| 237 |
return qa_chain, "LLM initialized successfully!"
|
| 238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
def conversation(qa_chain, message, history):
|
| 240 |
+
"""Fixed conversation function returning all required outputs"""
|
| 241 |
response = qa_chain.invoke({
|
| 242 |
"question": message,
|
| 243 |
+
"chat_history": [(hist[0], hist[1]) for hist in history]
|
| 244 |
})
|
| 245 |
|
| 246 |
response_answer = response["answer"]
|
| 247 |
+
if "Helpful Answer:" in response_answer:
|
| 248 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
| 249 |
|
| 250 |
+
# Get source documents, ensure we have exactly 3
|
| 251 |
+
sources = response["source_documents"][:3]
|
| 252 |
+
source_contents = []
|
| 253 |
+
source_pages = []
|
| 254 |
|
| 255 |
+
# Process available sources
|
| 256 |
+
for source in sources:
|
| 257 |
+
source_contents.append(source.page_content.strip())
|
| 258 |
+
source_pages.append(source.metadata.get("page", 0) + 1)
|
| 259 |
|
| 260 |
+
# Pad with empty values if we have fewer than 3 sources
|
| 261 |
+
while len(source_contents) < 3:
|
| 262 |
+
source_contents.append("")
|
| 263 |
+
source_pages.append(0)
|
| 264 |
|
| 265 |
+
# Return all required outputs in correct order
|
| 266 |
+
return (
|
| 267 |
+
qa_chain, # State
|
| 268 |
+
gr.update(value=""), # Clear message box
|
| 269 |
+
history + [(message, response_answer)], # Updated chat history
|
| 270 |
+
source_contents[0], # First source
|
| 271 |
+
source_pages[0], # First page
|
| 272 |
+
source_contents[1], # Second source
|
| 273 |
+
source_pages[1], # Second page
|
| 274 |
+
source_contents[2], # Third source
|
| 275 |
+
source_pages[2] # Third page
|
| 276 |
+
)
|
| 277 |
|
| 278 |
def demo():
|
| 279 |
+
evaluator = RAGEvaluator()
|
| 280 |
+
|
| 281 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
|
| 282 |
vector_db = gr.State()
|
| 283 |
qa_chain = gr.State()
|
| 284 |
|
| 285 |
+
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot with Evaluation</h1></center>")
|
|
|
|
| 286 |
|
| 287 |
+
with gr.Tabs():
|
| 288 |
+
# Custom PDF Tab
|
| 289 |
+
with gr.Tab("Custom PDF Chat"):
|
| 290 |
with gr.Row():
|
| 291 |
+
with gr.Column(scale=86):
|
| 292 |
+
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
|
| 293 |
+
with gr.Row():
|
| 294 |
+
document = gr.Files(
|
| 295 |
+
height=300,
|
| 296 |
+
file_count="multiple",
|
| 297 |
+
file_types=["pdf"],
|
| 298 |
+
interactive=True,
|
| 299 |
+
label="Upload PDF documents"
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
with gr.Row():
|
| 303 |
+
splitting_strategy = gr.Radio(
|
| 304 |
+
["recursive", "fixed", "token"],
|
| 305 |
+
label="Text Splitting Strategy",
|
| 306 |
+
value="recursive"
|
| 307 |
+
)
|
| 308 |
+
db_choice = gr.Radio(
|
| 309 |
+
["faiss", "chroma", "qdrant"],
|
| 310 |
+
label="Vector Database",
|
| 311 |
+
value="faiss"
|
| 312 |
+
)
|
| 313 |
+
chunk_size = gr.Radio(
|
| 314 |
+
["small", "medium"],
|
| 315 |
+
label="Chunk Size",
|
| 316 |
+
value="medium"
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
with gr.Row():
|
| 320 |
+
db_btn = gr.Button("Create vector database")
|
| 321 |
+
db_progress = gr.Textbox(
|
| 322 |
+
value="Not initialized",
|
| 323 |
+
show_label=False
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
gr.Markdown("<b>Step 2 - Configure LLM</b>")
|
| 327 |
+
with gr.Row():
|
| 328 |
+
llm_choice = gr.Radio(
|
| 329 |
+
list_llm_simple,
|
| 330 |
+
label="Available LLMs",
|
| 331 |
+
value=list_llm_simple[0],
|
| 332 |
+
type="index"
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
with gr.Row():
|
| 336 |
+
with gr.Accordion("LLM Parameters", open=False):
|
| 337 |
+
temperature = gr.Slider(
|
| 338 |
+
minimum=0.01,
|
| 339 |
+
maximum=1.0,
|
| 340 |
+
value=0.5,
|
| 341 |
+
step=0.1,
|
| 342 |
+
label="Temperature"
|
| 343 |
+
)
|
| 344 |
+
max_tokens = gr.Slider(
|
| 345 |
+
minimum=128,
|
| 346 |
+
maximum=4096,
|
| 347 |
+
value=2048,
|
| 348 |
+
step=128,
|
| 349 |
+
label="Max Tokens"
|
| 350 |
+
)
|
| 351 |
+
top_k = gr.Slider(
|
| 352 |
+
minimum=1,
|
| 353 |
+
maximum=10,
|
| 354 |
+
value=3,
|
| 355 |
+
step=1,
|
| 356 |
+
label="Top K"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
with gr.Row():
|
| 360 |
+
init_llm_btn = gr.Button("Initialize LLM")
|
| 361 |
+
llm_progress = gr.Textbox(
|
| 362 |
+
value="Not initialized",
|
| 363 |
+
show_label=False
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
with gr.Column(scale=200):
|
| 367 |
+
gr.Markdown("<b>Step 3 - Chat with Documents</b>")
|
| 368 |
+
chatbot = gr.Chatbot(height=505)
|
| 369 |
+
|
| 370 |
+
with gr.Accordion("Source References", open=False):
|
| 371 |
+
with gr.Row():
|
| 372 |
+
source1 = gr.Textbox(label="Source 1", lines=2)
|
| 373 |
+
page1 = gr.Number(label="Page")
|
| 374 |
+
with gr.Row():
|
| 375 |
+
source2 = gr.Textbox(label="Source 2", lines=2)
|
| 376 |
+
page2 = gr.Number(label="Page")
|
| 377 |
+
with gr.Row():
|
| 378 |
+
source3 = gr.Textbox(label="Source 3", lines=2)
|
| 379 |
+
page3 = gr.Number(label="Page")
|
| 380 |
+
|
| 381 |
+
with gr.Row():
|
| 382 |
+
msg = gr.Textbox(
|
| 383 |
+
placeholder="Ask a question",
|
| 384 |
+
show_label=False
|
| 385 |
+
)
|
| 386 |
+
with gr.Row():
|
| 387 |
+
submit_btn = gr.Button("Submit")
|
| 388 |
+
clear_btn = gr.ClearButton(
|
| 389 |
+
[msg, chatbot],
|
| 390 |
+
value="Clear Chat"
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
# Evaluation Tab
|
| 394 |
+
with gr.Tab("RAG Evaluation"):
|
| 395 |
+
with gr.Row():
|
| 396 |
+
dataset_choice = gr.Dropdown(
|
| 397 |
+
choices=list(evaluator.datasets.keys()),
|
| 398 |
+
label="Select Evaluation Dataset",
|
| 399 |
+
value="squad"
|
| 400 |
+
)
|
| 401 |
+
load_dataset_btn = gr.Button("Load Dataset")
|
| 402 |
|
| 403 |
with gr.Row():
|
| 404 |
+
dataset_info = gr.JSON(label="Dataset Information")
|
| 405 |
+
|
| 406 |
+
with gr.Row():
|
| 407 |
+
eval_splitting_strategy = gr.Radio(
|
| 408 |
["recursive", "fixed", "token"],
|
| 409 |
label="Text Splitting Strategy",
|
| 410 |
value="recursive"
|
| 411 |
)
|
| 412 |
+
eval_chunk_size = gr.Radio(
|
| 413 |
+
["small", "medium"],
|
| 414 |
+
label="Chunk Size",
|
| 415 |
+
value="medium"
|
| 416 |
)
|
| 417 |
|
| 418 |
with gr.Row():
|
| 419 |
+
evaluate_btn = gr.Button("Run Evaluation")
|
| 420 |
+
evaluation_results = gr.DataFrame(label="Evaluation Results")
|
| 421 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
# Event handlers
|
| 423 |
db_btn.click(
|
| 424 |
initialize_database,
|
| 425 |
+
inputs=[document, splitting_strategy, chunk_size, db_choice],
|
| 426 |
outputs=[vector_db, db_progress]
|
| 427 |
)
|
| 428 |
|
| 429 |
+
init_llm_btn.click(
|
| 430 |
+
initialize_llmchain,
|
| 431 |
+
inputs=[llm_choice, temperature, max_tokens, top_k, vector_db],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
outputs=[qa_chain, llm_progress]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
)
|
| 434 |
|
| 435 |
+
msg.submit(
|
| 436 |
+
conversation,
|
| 437 |
inputs=[qa_chain, msg, chatbot],
|
| 438 |
+
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
|
|
|
|
| 439 |
)
|
| 440 |
|
| 441 |
+
submit_btn.click(
|
| 442 |
+
conversation,
|
| 443 |
inputs=[qa_chain, msg, chatbot],
|
| 444 |
+
outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
|
|
|
|
| 445 |
)
|
| 446 |
+
|
| 447 |
+
def load_dataset_handler(dataset_name):
|
| 448 |
+
try:
|
| 449 |
+
result = evaluator.load_dataset(dataset_name)
|
| 450 |
+
if result.get("status") == "success":
|
| 451 |
+
return {
|
| 452 |
+
"dataset": result["dataset"],
|
| 453 |
+
"samples_loaded": result["num_samples"],
|
| 454 |
+
"example_questions": result["sample_questions"],
|
| 455 |
+
"status": "ready for evaluation"
|
| 456 |
+
}
|
| 457 |
+
else:
|
| 458 |
+
return {
|
| 459 |
+
"error": result.get("error", "Unknown error occurred"),
|
| 460 |
+
"status": "failed to load dataset"
|
| 461 |
+
}
|
| 462 |
+
except Exception as e:
|
| 463 |
+
return {
|
| 464 |
+
"error": str(e),
|
| 465 |
+
"status": "failed to load dataset"
|
| 466 |
+
}
|
| 467 |
|
| 468 |
+
def run_evaluation(dataset_choice, splitting_strategy, chunk_size, vector_db, qa_chain):
|
| 469 |
+
if not evaluator.current_dataset:
|
| 470 |
+
return pd.DataFrame()
|
| 471 |
+
|
| 472 |
+
results = evaluator.evaluate_configuration(
|
| 473 |
+
vector_db=vector_db,
|
| 474 |
+
qa_chain=qa_chain,
|
| 475 |
+
splitting_strategy=splitting_strategy,
|
| 476 |
+
chunk_size=chunk_size
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
return pd.DataFrame([results])
|
| 480 |
+
|
| 481 |
+
load_dataset_btn.click(
|
| 482 |
+
load_dataset_handler,
|
| 483 |
+
inputs=[dataset_choice],
|
| 484 |
+
outputs=[dataset_info]
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
evaluate_btn.click(
|
| 488 |
+
run_evaluation,
|
| 489 |
+
inputs=[
|
| 490 |
+
dataset_choice,
|
| 491 |
+
eval_splitting_strategy,
|
| 492 |
+
eval_chunk_size,
|
| 493 |
+
vector_db,
|
| 494 |
+
qa_chain
|
| 495 |
+
],
|
| 496 |
+
outputs=[evaluation_results]
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
# Clear button handlers
|
| 500 |
clear_btn.click(
|
| 501 |
lambda: [None, "", 0, "", 0, "", 0],
|
| 502 |
+
outputs=[chatbot, source1, page1, source2, page2, source3, page3]
|
|
|
|
|
|
|
| 503 |
)
|
| 504 |
+
|
| 505 |
+
# Launch the demo
|
| 506 |
demo.queue().launch(debug=True)
|
| 507 |
|
| 508 |
if __name__ == "__main__":
|