Spaces:
Runtime error
Runtime error
| from utils.references import References | |
| from utils.prompts import generate_paper_prompts, generate_keywords_prompts, generate_experiments_prompts | |
| from utils.gpt_interaction import get_responses, extract_responses, extract_keywords, extract_json | |
| from utils.tex_processing import replace_title | |
| from utils.figures import generate_random_figures | |
| import datetime | |
| import shutil | |
| import time | |
| import logging | |
| import os | |
| TOTAL_TOKENS = 0 | |
| TOTAL_PROMPTS_TOKENS = 0 | |
| TOTAL_COMPLETION_TOKENS = 0 | |
| def make_archive(source, destination): | |
| base = os.path.basename(destination) | |
| name = base.split('.')[0] | |
| format = base.split('.')[1] | |
| archive_from = os.path.dirname(source) | |
| archive_to = os.path.basename(source.strip(os.sep)) | |
| shutil.make_archive(name, format, archive_from, archive_to) | |
| shutil.move('%s.%s'%(name,format), destination) | |
| return destination | |
| def log_usage(usage, generating_target, print_out=True): | |
| global TOTAL_TOKENS | |
| global TOTAL_PROMPTS_TOKENS | |
| global TOTAL_COMPLETION_TOKENS | |
| prompts_tokens = usage['prompt_tokens'] | |
| completion_tokens = usage['completion_tokens'] | |
| total_tokens = usage['total_tokens'] | |
| TOTAL_TOKENS += total_tokens | |
| TOTAL_PROMPTS_TOKENS += prompts_tokens | |
| TOTAL_COMPLETION_TOKENS += completion_tokens | |
| message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \ | |
| f"{TOTAL_TOKENS} tokens have been used in total." | |
| if print_out: | |
| print(message) | |
| logging.info(message) | |
| def pipeline(paper, section, save_to_path, model): | |
| """ | |
| The main pipeline of generating a section. | |
| 1. Generate prompts. | |
| 2. Get responses from AI assistant. | |
| 3. Extract the section text. | |
| 4. Save the text to .tex file. | |
| :return usage | |
| """ | |
| print(f"Generating {section}...") | |
| prompts = generate_paper_prompts(paper, section) | |
| gpt_response, usage = get_responses(prompts, model) | |
| output = extract_responses(gpt_response) | |
| paper["body"][section] = output | |
| tex_file = save_to_path + f"{section}.tex" | |
| if section == "abstract": | |
| with open(tex_file, "w") as f: | |
| f.write(r"\begin{abstract}") | |
| with open(tex_file, "a") as f: | |
| f.write(output) | |
| with open(tex_file, "a") as f: | |
| f.write(r"\end{abstract}") | |
| else: | |
| with open(tex_file, "w") as f: | |
| f.write(f"\section{{{section}}}\n") | |
| with open(tex_file, "a") as f: | |
| f.write(output) | |
| time.sleep(5) | |
| print(f"{section} has been generated. Saved to {tex_file}.") | |
| return usage | |
| def generate_draft(title, description="", template="ICLR2022", model="gpt-4"): | |
| """ | |
| The main pipeline of generating a paper. | |
| 1. Copy everything to the output folder. | |
| 2. Create references. | |
| 3. Generate each section using `pipeline`. | |
| 4. Post-processing: check common errors, fill the title, ... | |
| """ | |
| paper = {} | |
| paper_body = {} | |
| # Create a copy in the outputs folder. | |
| now = datetime.datetime.now() | |
| target_name = now.strftime("outputs_%Y%m%d_%H%M%S") | |
| source_folder = f"latex_templates/{template}" | |
| destination_folder = f"outputs/{target_name}" | |
| shutil.copytree(source_folder, destination_folder) | |
| bibtex_path = destination_folder + "/ref.bib" | |
| save_to_path = destination_folder +"/" | |
| replace_title(save_to_path, title) | |
| logging.basicConfig( level=logging.INFO, filename=save_to_path+"generation.log") | |
| # Generate keywords and references | |
| print("Initialize the paper information ...") | |
| prompts = generate_keywords_prompts(title, description) | |
| gpt_response, usage = get_responses(prompts, model) | |
| keywords = extract_keywords(gpt_response) | |
| log_usage(usage, "keywords") | |
| ref = References(load_papers = "") | |
| ref.collect_papers(keywords, method="arxiv") | |
| all_paper_ids = ref.to_bibtex(bibtex_path) #todo: this will used to check if all citations are in this list | |
| print(f"The paper information has been initialized. References are saved to {bibtex_path}.") | |
| paper["title"] = title | |
| paper["description"] = description | |
| paper["references"] = ref.to_prompts() # to_prompts(top_papers) | |
| paper["body"] = paper_body | |
| paper["bibtex"] = bibtex_path | |
| print("Generating figures ...") | |
| prompts = generate_experiments_prompts(paper) | |
| gpt_response, usage = get_responses(prompts, model) | |
| list_of_methods = list(extract_json(gpt_response)) | |
| log_usage(usage, "figures") | |
| generate_random_figures(list_of_methods, save_to_path + "comparison.png") | |
| for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]: | |
| try: | |
| usage = pipeline(paper, section, save_to_path, model=model) | |
| log_usage(usage, section) | |
| except Exception as e: | |
| print(f"Failed to generate {section} due to the error: {e}") | |
| print(f"The paper {title} has been generated. Saved to {save_to_path}.") | |
| return make_archive(destination_folder, "output.zip") | |
| if __name__ == "__main__": | |
| # title = "Training Adversarial Generative Neural Network with Adaptive Dropout Rate" | |
| title = "Playing Atari Game with Deep Reinforcement Learning" | |
| description = "" | |
| template = "ICLR2022" | |
| model = "gpt-4" | |
| # model = "gpt-3.5-turbo" | |
| generate_draft(title, description, template, model) | |