Spaces:
Paused
Paused
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| import re | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| TextIteratorStreamer, | |
| Qwen2VLForConditionalGeneration, | |
| AutoProcessor, | |
| AutoConfig, | |
| ) | |
| from transformers.image_utils import load_image | |
| # Constants | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Helper function to return a progress bar HTML snippet. | |
| def progress_bar_html(label: str) -> str: | |
| return f''' | |
| <div style="display: flex; align-items: center;"> | |
| <span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
| <div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;"> | |
| <div style="width: 100%; height: 100%; background-color: #00FF00 ; animation: loading 1.5s linear infinite;"></div> | |
| </div> | |
| </div> | |
| <style> | |
| @keyframes loading {{ | |
| 0% {{ transform: translateX(-100%); }} | |
| 100% {{ transform: translateX(100%); }} | |
| }} | |
| </style> | |
| ''' | |
| # Définir le model_id avant de l'utiliser | |
| model_id = "baconnier/Napoleon_4B_V0.0" | |
| # TEXT MODEL - Utiliser Napoleon 4B avec configuration modifiée | |
| # Charger la configuration | |
| config = AutoConfig.from_pretrained(model_id) | |
| # Extraire les attributs de text_config vers la configuration principale | |
| if hasattr(config, "text_config"): | |
| for key, value in vars(config.text_config).items(): | |
| if not hasattr(config, key): | |
| setattr(config, key, value) | |
| else: | |
| # Ajouter manuellement les attributs si text_config n'existe pas | |
| if not hasattr(config, "vocab_size"): | |
| config.vocab_size = 262208 | |
| if not hasattr(config, "hidden_size"): | |
| config.hidden_size = 2560 | |
| if not hasattr(config, "num_hidden_layers"): | |
| config.num_hidden_layers = 34 | |
| if not hasattr(config, "intermediate_size"): | |
| config.intermediate_size = 10240 | |
| if not hasattr(config, "num_attention_heads"): | |
| config.num_attention_heads = 10 | |
| if not hasattr(config, "sliding_window"): | |
| config.sliding_window = 1024 | |
| if not hasattr(config, "sliding_window_pattern"): | |
| config.sliding_window_pattern = 6 | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| config=config, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| trust_remote_code=True | |
| ) | |
| model.eval() | |
| # MULTIMODAL (OCR) MODELS - Garder Qwen2-VL pour OCR | |
| MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True) | |
| model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID_VL, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| def clean_chat_history(chat_history): | |
| cleaned = [] | |
| for msg in chat_history: | |
| if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
| cleaned.append(msg) | |
| return cleaned | |
| bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) | |
| bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) | |
| default_negative = os.getenv("default_negative", "") | |
| def check_text(prompt, negative=""): | |
| for i in bad_words: | |
| if i in prompt: | |
| return True | |
| for i in bad_words_negative: | |
| if i in negative: | |
| return True | |
| return False | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) | |
| USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
| ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
| dtype = torch.float16 if device.type == "cuda" else torch.float32 | |
| # NAPOLEON 4B MULTIMODAL MODEL - Pour le traitement des images et vidéos | |
| napoleon_processor = AutoProcessor.from_pretrained(model_id) | |
| # VIDEO PROCESSING HELPER | |
| def downsample_video(video_path): | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| # Sample 10 evenly spaced frames. | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| # Convert from BGR to RGB and then to PIL Image. | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| # MAIN GENERATION FUNCTION | |
| def generate( | |
| input_dict: dict, | |
| chat_history: list[dict], | |
| max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ): | |
| text = input_dict["text"] | |
| files = input_dict.get("files", []) | |
| lower_text = text.lower().strip() | |
| # NAPOLEON 4B TEXT & MULTIMODAL (image) Branch | |
| if lower_text.startswith("@napoleon"): | |
| # Remove the napoleon flag from the prompt. | |
| prompt_clean = re.sub(r"@napoleon", "", text, flags=re.IGNORECASE).strip().strip('"') | |
| if files: | |
| # If image files are provided, load them. | |
| images = [load_image(f) for f in files] | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": prompt_clean}, | |
| ] | |
| }] | |
| else: | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": prompt_clean}]} | |
| ] | |
| inputs = tokenizer.apply_chat_template( | |
| messages, add_generation_prompt=True, tokenize=True, | |
| return_dict=True, return_tensors="pt" | |
| ).to(model.device, dtype=torch.bfloat16) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True | |
| ) | |
| generation_kwargs = { | |
| "input_ids": inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Traitement avec Napoleon 4B") | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer | |
| return | |
| # NAPOLEON 4B VIDEO Branch | |
| if lower_text.startswith("@video"): | |
| # Remove the video flag from the prompt. | |
| prompt_clean = re.sub(r"@video", "", text, flags=re.IGNORECASE).strip().strip('"') | |
| if files: | |
| # Assume the first file is a video. | |
| video_path = files[0] | |
| frames = downsample_video(video_path) | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": prompt_clean}]} | |
| ] | |
| # Append each frame as an image with a timestamp label. | |
| for frame in frames: | |
| image, timestamp = frame | |
| image_path = f"video_frame_{uuid.uuid4().hex}.png" | |
| image.save(image_path) | |
| messages[1]["content"].append({"type": "text", "text": f"Image à {timestamp}s:"}) | |
| messages[1]["content"].append({"type": "image", "url": image_path}) | |
| else: | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": prompt_clean}]} | |
| ] | |
| inputs = tokenizer.apply_chat_template( | |
| messages, add_generation_prompt=True, tokenize=True, | |
| return_dict=True, return_tensors="pt" | |
| ).to(model.device, dtype=torch.bfloat16) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True | |
| ) | |
| generation_kwargs = { | |
| "input_ids": inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Traitement vidéo avec Napoleon 4B") | |
| for new_text in streamer: | |
| buffer += new_text | |
| time.sleep(0.01) | |
| yield buffer | |
| return | |
| # Otherwise, handle text/chat generation. | |
| conversation = clean_chat_history(chat_history) | |
| conversation.append({"role": "user", "content": text}) | |
| if files: | |
| images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])] | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Traitement avec Qwen2VL OCR") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| else: | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Texte d'entrée tronqué car plus long que {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| "input_ids": input_ids, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "temperature": temperature, | |
| "num_beams": 1, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| t = Thread(target=model.generate, kwargs=generation_kwargs) | |
| t.start() | |
| outputs = [] | |
| for new_text in streamer: | |
| outputs.append(new_text) | |
| yield "".join(outputs) | |
| final_response = "".join(outputs) | |
| yield final_response | |
| demo = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider(label="Nombre maximum de tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
| gr.Slider(label="Température", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
| gr.Slider(label="Top-p (échantillonnage nucleus)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
| gr.Slider(label="Pénalité de répétition", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
| ], | |
| examples=[ | |
| [ | |
| { | |
| "text": "@napoleon Créez une histoire courte basée sur les images.", | |
| "files": [ | |
| "examples/1111.jpg", | |
| "examples/2222.jpg", | |
| "examples/3333.jpg", | |
| ], | |
| } | |
| ], | |
| [{"text": "@napoleon Expliquez cette image", "files": ["examples/3.jpg"]}], | |
| [{"text": "@video Expliquez le contenu de cette publicité", "files": ["examples/videoplayback.mp4"]}], | |
| [{"text": "@napoleon Quel personnage de film est-ce?", "files": ["examples/9999.jpg"]}], | |
| ["@napoleon Expliquez la température critique d'une substance"], | |
| [{"text": "@napoleon Transcription de cette lettre", "files": ["examples/222.png"]}], | |
| [{"text": "@video Expliquez le contenu de la vidéo en détail", "files": ["examples/breakfast.mp4"]}], | |
| [{"text": "@video Décrivez la vidéo", "files": ["examples/Missing.mp4"]}], | |
| [{"text": "@video Expliquez ce qui se passe dans cette vidéo", "files": ["examples/oreo.mp4"]}], | |
| [{"text": "@video Résumez les événements de cette vidéo", "files": ["examples/sky.mp4"]}], | |
| [{"text": "@video Qu'y a-t-il dans cette vidéo?", "files": ["examples/redlight.mp4"]}], | |
| ["Programme Python pour la rotation de tableau"], | |
| ["@napoleon Expliquez la température critique d'une substance"] | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| description="# **Napoleon 4B `@napoleon pour le multimodal, @video pour la compréhension vidéo`**", | |
| fill_height=True, | |
| textbox=gr.MultimodalTextbox(label="Saisir votre question", file_types=["image", "video"], file_count="multiple", placeholder="Utilisez @napoleon pour le multimodal, @video pour l'analyse vidéo !"), | |
| stop_btn="Arrêter la génération", | |
| multimodal=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(share=True) | |