Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from typing import Tuple
|
| 2 |
import gradio as gr
|
| 3 |
import supervision as sv
|
| 4 |
import numpy as np
|
|
@@ -6,13 +6,25 @@ from PIL import Image
|
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
from ultralytics import YOLO
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Create annotators
|
| 18 |
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
|
|
@@ -20,9 +32,13 @@ BOX_ANNOTATOR = sv.BoxAnnotator()
|
|
| 20 |
|
| 21 |
def detect_and_annotate(
|
| 22 |
image: np.ndarray,
|
|
|
|
| 23 |
conf_threshold: float,
|
| 24 |
iou_threshold: float
|
| 25 |
) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
| 26 |
# Perform inference
|
| 27 |
results = model.predict(
|
| 28 |
image,
|
|
@@ -67,6 +83,12 @@ with gr.Blocks() as demo:
|
|
| 67 |
type='numpy'
|
| 68 |
)
|
| 69 |
with gr.Accordion("Detection Settings", open=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
with gr.Row():
|
| 71 |
conf_threshold = gr.Slider(
|
| 72 |
label="Confidence Threshold",
|
|
@@ -95,12 +117,13 @@ with gr.Blocks() as demo:
|
|
| 95 |
|
| 96 |
def process_image(
|
| 97 |
image: np.ndarray,
|
|
|
|
| 98 |
conf_threshold: float,
|
| 99 |
iou_threshold: float
|
| 100 |
) -> Tuple[np.ndarray, np.ndarray]:
|
| 101 |
if image is None:
|
| 102 |
return None, None
|
| 103 |
-
annotated_image = detect_and_annotate(image, conf_threshold, iou_threshold)
|
| 104 |
return image, annotated_image
|
| 105 |
|
| 106 |
def clear():
|
|
@@ -109,7 +132,7 @@ with gr.Blocks() as demo:
|
|
| 109 |
# Connect buttons to functions
|
| 110 |
detect_btn.click(
|
| 111 |
process_image,
|
| 112 |
-
inputs=[input_image, conf_threshold, iou_threshold],
|
| 113 |
outputs=[input_image, output_image]
|
| 114 |
)
|
| 115 |
clear_btn.click(
|
|
|
|
| 1 |
+
from typing import Tuple, Dict
|
| 2 |
import gradio as gr
|
| 3 |
import supervision as sv
|
| 4 |
import numpy as np
|
|
|
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
from ultralytics import YOLO
|
| 8 |
|
| 9 |
+
# Define models
|
| 10 |
+
MODEL_OPTIONS = {
|
| 11 |
+
"YOLOv11-Nano": "medieval-yolov11n.pt",
|
| 12 |
+
"YOLOv11-Small": "medieval-yolov11s.pt",
|
| 13 |
+
"YOLOv11-Medium": "medieval-yolov11m.pt",
|
| 14 |
+
"YOLOv11-Large": "medieval-yolov11l.pt",
|
| 15 |
+
"YOLOv11-XLarge": "medieval-yolov11x.pt"
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
# Dictionary to store loaded models
|
| 19 |
+
models: Dict[str, YOLO] = {}
|
| 20 |
+
|
| 21 |
+
# Load all models
|
| 22 |
+
for name, model_file in MODEL_OPTIONS.items():
|
| 23 |
+
model_path = hf_hub_download(
|
| 24 |
+
repo_id="biglam/medieval-manuscript-yolov11",
|
| 25 |
+
filename=model_file
|
| 26 |
+
)
|
| 27 |
+
models[name] = YOLO(model_path)
|
| 28 |
|
| 29 |
# Create annotators
|
| 30 |
LABEL_ANNOTATOR = sv.LabelAnnotator(text_color=sv.Color.BLACK)
|
|
|
|
| 32 |
|
| 33 |
def detect_and_annotate(
|
| 34 |
image: np.ndarray,
|
| 35 |
+
model_name: str,
|
| 36 |
conf_threshold: float,
|
| 37 |
iou_threshold: float
|
| 38 |
) -> np.ndarray:
|
| 39 |
+
# Get the selected model
|
| 40 |
+
model = models[model_name]
|
| 41 |
+
|
| 42 |
# Perform inference
|
| 43 |
results = model.predict(
|
| 44 |
image,
|
|
|
|
| 83 |
type='numpy'
|
| 84 |
)
|
| 85 |
with gr.Accordion("Detection Settings", open=True):
|
| 86 |
+
model_selector = gr.Dropdown(
|
| 87 |
+
choices=list(MODEL_OPTIONS.keys()),
|
| 88 |
+
value=list(MODEL_OPTIONS.keys())[0],
|
| 89 |
+
label="Model",
|
| 90 |
+
info="Select YOLO model variant"
|
| 91 |
+
)
|
| 92 |
with gr.Row():
|
| 93 |
conf_threshold = gr.Slider(
|
| 94 |
label="Confidence Threshold",
|
|
|
|
| 117 |
|
| 118 |
def process_image(
|
| 119 |
image: np.ndarray,
|
| 120 |
+
model_name: str,
|
| 121 |
conf_threshold: float,
|
| 122 |
iou_threshold: float
|
| 123 |
) -> Tuple[np.ndarray, np.ndarray]:
|
| 124 |
if image is None:
|
| 125 |
return None, None
|
| 126 |
+
annotated_image = detect_and_annotate(image, model_name, conf_threshold, iou_threshold)
|
| 127 |
return image, annotated_image
|
| 128 |
|
| 129 |
def clear():
|
|
|
|
| 132 |
# Connect buttons to functions
|
| 133 |
detect_btn.click(
|
| 134 |
process_image,
|
| 135 |
+
inputs=[input_image, model_selector, conf_threshold, iou_threshold],
|
| 136 |
outputs=[input_image, output_image]
|
| 137 |
)
|
| 138 |
clear_btn.click(
|