Spaces:
Running
Running
| import requests | |
| import streamlit as st | |
| import time | |
| from transformers import pipeline | |
| import os | |
| from .utils import query | |
| HF_AUTH_TOKEN = os.getenv('HF_AUTH_TOKEN') | |
| headers = {"Authorization": f"Bearer {HF_AUTH_TOKEN}"} | |
| def write(): | |
| st.markdown("# Sentiment Classification") | |
| st.sidebar.header("Sentiment Classification") | |
| st.write( | |
| """Here, you can perform sentiment classification using the fine-tuned TURNA classification models. """ | |
| ) | |
| # Sidebar | |
| # Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py | |
| st.sidebar.subheader("Configurable parameters") | |
| model_name = st.sidebar.selectbox( | |
| "Model Selector", | |
| options=[ | |
| "turna_classification_17bintweet_sentiment", | |
| "turna_classification_tr_product_reviews", | |
| ], | |
| index=0, | |
| ) | |
| """max_new_tokens = st.sidebar.number_input( | |
| "Maximum length", | |
| min_value=0, | |
| max_value=20, | |
| value=20, | |
| help="The maximum length of the sequence to be generated.", | |
| )""" | |
| input_text = st.text_area(label='Enter a text: ', height=100, | |
| value="sonunda bugün kurtuldum senden") | |
| url = ("https://api-inference.huggingface.co/models/boun-tabi-LMG/" + model_name.lower()) | |
| params = {"max_new_tokens": 4 } | |
| if st.button("Generate"): | |
| with st.spinner('Generating...'): | |
| output = query(input_text, url, params) | |
| st.success(output) |