Spaces:
Sleeping
Sleeping
File size: 7,759 Bytes
8dc7c86 4729fab 8dc7c86 4729fab 8dc7c86 4729fab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
---
title: Benchmark Environment Server
emoji: πΉοΈ
colorFrom: purple
colorTo: blue
sdk: docker
pinned: false
app_port: 8000
base_path: /web
tags:
- openenv
---
# Benchmark Environment
A test environment for benchmarking infrastructure and concurrency. Actions specify how many seconds to wait (sleep), making it ideal for testing parallel execution and server scaling. Returns server identity information to verify which instance handled each request.
## Quick Start
The simplest way to use the Benchmark environment is through the `BenchmarkEnv` class:
```python
from benchmark import BenchmarkAction, BenchmarkEnv
try:
# Create environment from Docker image
benchmarkenv = BenchmarkEnv.from_docker_image("benchmark-env:latest")
# Reset - get server identity
result = benchmarkenv.reset()
print(f"Host URL: {result.observation.host_url}")
print(f"PID: {result.observation.pid}")
print(f"Session Hash: {result.observation.session_hash}")
# Test concurrency with different wait times
wait_times = [0.5, 1.0, 2.0]
for seconds in wait_times:
result = benchmarkenv.step(BenchmarkAction(wait_seconds=seconds))
print(f"Waited: {result.observation.waited_seconds}s")
print(f" β Timestamp: {result.observation.timestamp}")
print(f" β Reward: {result.reward}")
print(f" β Server PID: {result.observation.pid}")
finally:
# Always clean up
benchmarkenv.close()
```
That's it! The `BenchmarkEnv.from_docker_image()` method handles:
- Starting the Docker container
- Waiting for the server to be ready
- Connecting to the environment
- Container cleanup when you call `close()`
## Testing Concurrency
The benchmark environment is designed to test concurrent execution:
```python
import asyncio
from benchmark import BenchmarkAction, BenchmarkEnv
async def parallel_requests():
# Connect to multiple servers or same server
clients = [
BenchmarkEnv(base_url="http://localhost:8000"),
BenchmarkEnv(base_url="http://localhost:8001"),
BenchmarkEnv(base_url="http://localhost:8002"),
]
# Reset all clients
for client in clients:
result = client.reset()
print(f"Server {result.observation.session_hash}: PID {result.observation.pid}")
# Send concurrent requests with different wait times
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for i, client in enumerate(clients):
future = executor.submit(
client.step,
BenchmarkAction(wait_seconds=i + 1)
)
futures.append((client, future))
for client, future in futures:
result = future.result()
print(f"Server {result.observation.session_hash} waited {result.observation.waited_seconds}s")
# Clean up
for client in clients:
client.close()
```
## Building the Docker Image
Before using the environment, you need to build the Docker image:
```bash
# From project root
docker build -t benchmark-env:latest -f server/Dockerfile .
```
## Deploying to Hugging Face Spaces
You can easily deploy your OpenEnv environment to Hugging Face Spaces using the `openenv push` command:
```bash
# From the environment directory (where openenv.yaml is located)
openenv push
# Or specify options
openenv push --namespace my-org --private
```
The `openenv push` command will:
1. Validate that the directory is an OpenEnv environment (checks for `openenv.yaml`)
2. Prepare a custom build for Hugging Face Docker space (enables web interface)
3. Upload to Hugging Face (ensuring you're logged in)
### Prerequisites
- Authenticate with Hugging Face: The command will prompt for login if not already authenticated
### Options
- `--directory`, `-d`: Directory containing the OpenEnv environment (defaults to current directory)
- `--repo-id`, `-r`: Repository ID in format 'username/repo-name' (defaults to 'username/env-name' from openenv.yaml)
- `--base-image`, `-b`: Base Docker image to use (overrides Dockerfile FROM)
- `--private`: Deploy the space as private (default: public)
### Examples
```bash
# Push to your personal namespace (defaults to username/env-name from openenv.yaml)
openenv push
# Push to a specific repository
openenv push --repo-id my-org/my-env
# Push with a custom base image
openenv push --base-image ghcr.io/meta-pytorch/openenv-base:latest
# Push as a private space
openenv push --private
# Combine options
openenv push --repo-id my-org/my-env --base-image custom-base:latest --private
```
After deployment, your space will be available at:
`https://huggingface.co/spaces/<repo-id>`
The deployed space includes:
- **Web Interface** at `/web` - Interactive UI for exploring the environment
- **API Documentation** at `/docs` - Full OpenAPI/Swagger interface
- **Health Check** at `/health` - Container health monitoring
## Environment Details
### Action
**BenchmarkAction**: Contains a single field
- `wait_seconds` (float) - Seconds to wait/sleep before returning (default: 0.0)
### Observation
**BenchmarkObservation**: Contains server identity and timing information
- `host_url` (str) - The URL of the server that handled the request
- `pid` (int) - Process ID of the server
- `session_hash` (str) - Unique 16-character hash identifying this server session
- `waited_seconds` (float) - Actual seconds waited
- `timestamp` (float) - Unix timestamp when observation was created
- `reward` (float) - Reward based on wait time
- `done` (bool) - Always False for benchmark environment
- `metadata` (dict) - Additional info
### Reward
The reward is calculated as: `1.0 / (1.0 + wait_seconds)`
- 0 seconds β reward: 1.0
- 1 second β reward: 0.5
- 2 seconds β reward: 0.33
- Encourages faster responses
## Advanced Usage
### Connecting to an Existing Server
If you already have a Benchmark environment server running, you can connect directly:
```python
from benchmark import BenchmarkEnv, BenchmarkAction
# Connect to existing server
benchmarkenv = BenchmarkEnv(base_url="<ENV_HTTP_URL_HERE>")
# Use as normal
result = benchmarkenv.reset()
print(f"Connected to server: {result.observation.host_url}")
print(f"Session: {result.observation.session_hash}")
result = benchmarkenv.step(BenchmarkAction(wait_seconds=1.5))
print(f"Waited {result.observation.waited_seconds}s")
```
Note: When connecting to an existing server, `benchmarkenv.close()` will NOT stop the server.
## Development & Testing
### Direct Environment Testing
Test the environment logic directly without starting the HTTP server:
```bash
# From the server directory
python3 server/benchmark_environment.py
```
This verifies that:
- Environment resets correctly
- Step executes actions properly
- State tracking works
- Server identity is returned correctly
### Running Locally
Run the server locally for development:
```bash
uvicorn server.app:app --reload
```
## Project Structure
```
benchmark/
βββ .dockerignore # Docker build exclusions
βββ __init__.py # Module exports
βββ README.md # This file
βββ openenv.yaml # OpenEnv manifest
βββ pyproject.toml # Project metadata and dependencies
βββ uv.lock # Locked dependencies (generated)
βββ client.py # BenchmarkEnv client implementation
βββ models.py # Action and Observation models
βββ server/
βββ __init__.py # Server module exports
βββ benchmark_environment.py # Core environment logic
βββ app.py # FastAPI application
βββ Dockerfile # Container image definition
```
|