File size: 46,055 Bytes
ad3a64a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
#!/usr/bin/env python3
"""
Life Coach v1 - Phi-4 Fine-tuned Life Coaching Assistant

A simple command-line life coaching assistant using Microsoft's Phi-4 model.
Fine-tunes on life coaching conversations and provides interactive chat sessions.
"""

import torch
import json
import os
import gc
import argparse
from pathlib import Path
from typing import Optional
from tqdm import tqdm

# Set PyTorch CUDA memory allocation config to reduce fragmentation
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'

from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    TrainingArguments,
    Trainer,
    DataCollatorForSeq2Seq
)
from datasets import Dataset, load_dataset, concatenate_datasets
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType
import logging
import random
import shutil
import gzip
from typing import List, Dict

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)


def cleanup_gpu_memory():
    """
    Clean up GPU memory before starting the program.
    Clears PyTorch cache and runs garbage collection.
    """
    logger.info("=" * 80)
    logger.info("GPU MEMORY CLEANUP")
    logger.info("=" * 80)

    if torch.cuda.is_available():
        # Clear PyTorch CUDA cache
        torch.cuda.empty_cache()

        # Run garbage collection
        gc.collect()

        # Get GPU memory stats
        for i in range(torch.cuda.device_count()):
            total = torch.cuda.get_device_properties(i).total_memory / 1024**3
            reserved = torch.cuda.memory_reserved(i) / 1024**3
            allocated = torch.cuda.memory_allocated(i) / 1024**3
            free = total - reserved

            logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
            logger.info(f"  Total memory: {total:.2f} GB")
            logger.info(f"  Reserved: {reserved:.2f} GB")
            logger.info(f"  Allocated: {allocated:.2f} GB")
            logger.info(f"  Free: {free:.2f} GB")

            if reserved > 1.0:  # More than 1GB reserved
                logger.warning(f"  ⚠️  GPU {i} has {reserved:.2f} GB reserved!")
                logger.warning(f"  ⚠️  This might be from a previous run.")
                logger.warning(f"  ⚠️  If you encounter OOM errors, kill other processes using:")
                logger.warning(f"  ⚠️  nvidia-smi | grep python")
    else:
        logger.warning("No CUDA GPUs available! Running on CPU (very slow).")

    logger.info("=" * 80)


def clear_hf_cache():
    """Clear Hugging Face datasets cache to save disk space."""
    try:
        from datasets import config
        cache_dir = config.HF_DATASETS_CACHE
        if os.path.exists(cache_dir):
            # Get size before clearing
            size_mb = sum(os.path.getsize(os.path.join(dirpath,filename))
                         for dirpath, _, filenames in os.walk(cache_dir)
                         for filename in filenames) / (1024 * 1024)

            logger.info(f"Clearing HF cache ({size_mb:.1f} MB)...")
            shutil.rmtree(cache_dir, ignore_errors=True)
            os.makedirs(cache_dir, exist_ok=True)
            logger.info("βœ“ Cache cleared")
    except Exception as e:
        logger.warning(f"Failed to clear cache: {e}")


def load_mental_health_counseling() -> List[Dict]:
    """Load Amod/mental_health_counseling_conversations dataset - ALL samples."""
    logger.info(f"Loading mental health counseling dataset...")
    try:
        dataset = load_dataset("Amod/mental_health_counseling_conversations", split="train")
        logger.info(f"  Dataset has {len(dataset)} samples available")

        conversations = []
        for item in dataset:
            # Format: Context (user) -> Response (assistant)
            conversations.append({
                "messages": [
                    {"role": "user", "content": item.get("Context", "").strip()},
                    {"role": "assistant", "content": item.get("Response", "").strip()}
                ]
            })

        logger.info(f"βœ“ Loaded {len(conversations)} mental health counseling conversations")
        return conversations
    except Exception as e:
        logger.warning(f"Failed to load mental health counseling dataset: {e}")
        return []


def load_counsel_chat() -> List[Dict]:
    """Load nbertagnolli/counsel-chat dataset - ALL samples."""
    logger.info(f"Loading CounselChat (nbertagnolli) dataset...")
    try:
        dataset = load_dataset("nbertagnolli/counsel-chat", split="train")
        logger.info(f"  Dataset has {len(dataset)} samples available")

        conversations = []
        for item in dataset:
            # Try different possible field names
            question = None
            answer = None

            # Common field patterns
            for q_field in ["questionText", "question", "query", "input", "user_message"]:
                if q_field in item and item.get(q_field):
                    question = item[q_field].strip()
                    break

            for a_field in ["answerText", "answer", "response", "output", "counselor_message"]:
                if a_field in item and item.get(a_field):
                    answer = item[a_field].strip()
                    break

            if question and answer:
                conversations.append({
                    "messages": [
                        {"role": "user", "content": question},
                        {"role": "assistant", "content": answer}
                    ]
                })

        logger.info(f"βœ“ Loaded {len(conversations)} CounselChat conversations")
        return conversations
    except Exception as e:
        logger.warning(f"Failed to load CounselChat dataset: {e}")
        return []


def load_cbt_cognitive_distortions() -> List[Dict]:
    """Load epsilon3/cbt-cognitive-distortions-analysis dataset - ALL samples."""
    logger.info(f"Loading CBT Cognitive Distortions dataset...")
    try:
        dataset = load_dataset("epsilon3/cbt-cognitive-distortions-analysis", split="train")
        logger.info(f"  Dataset has {len(dataset)} samples available")

        conversations = []
        for item in dataset:
            # Try different field patterns
            user_msg = None
            assistant_msg = None

            for u_field in ["input", "text", "thought", "statement", "user_input"]:
                if u_field in item and item.get(u_field):
                    user_msg = item[u_field].strip()
                    break

            for a_field in ["output", "analysis", "reframe", "response", "cbt_response"]:
                if a_field in item and item.get(a_field):
                    assistant_msg = item[a_field].strip()
                    break

            if user_msg and assistant_msg:
                conversations.append({
                    "messages": [
                        {"role": "user", "content": user_msg},
                        {"role": "assistant", "content": assistant_msg}
                    ]
                })

        logger.info(f"βœ“ Loaded {len(conversations)} CBT Cognitive Distortions conversations")
        return conversations
    except Exception as e:
        logger.warning(f"Failed to load CBT Cognitive Distortions dataset: {e}")
        return []


def load_peer_counseling_reflections() -> List[Dict]:
    """Load emoneil/reflections-in-peer-counseling dataset - ALL samples."""
    logger.info(f"Loading Peer Counseling Reflections dataset...")
    try:
        dataset = load_dataset("emoneil/reflections-in-peer-counseling", split="train")
        logger.info(f"  Dataset has {len(dataset)} samples available")

        conversations = []
        for item in dataset:
            # Try different field patterns
            user_msg = None
            assistant_msg = None

            for u_field in ["question", "statement", "input", "user_message", "counselee"]:
                if u_field in item and item.get(u_field):
                    user_msg = item[u_field].strip()
                    break

            for a_field in ["reflection", "response", "output", "counselor_response", "counselor"]:
                if a_field in item and item.get(a_field):
                    assistant_msg = item[a_field].strip()
                    break

            if user_msg and assistant_msg:
                conversations.append({
                    "messages": [
                        {"role": "user", "content": user_msg},
                        {"role": "assistant", "content": assistant_msg}
                    ]
                })

        logger.info(f"βœ“ Loaded {len(conversations)} Peer Counseling Reflections conversations")
        return conversations
    except Exception as e:
        logger.warning(f"Failed to load Peer Counseling Reflections dataset: {e}")
        return []


def load_dolly_dataset() -> List[Dict]:
    """Load databricks-dolly-15k dataset (instruction-following) - ALL relevant samples."""
    logger.info(f"Loading Dolly instruction dataset...")
    try:
        dataset = load_dataset("databricks/databricks-dolly-15k", split="train")
        logger.info(f"  Dataset has {len(dataset)} samples available")

        # Filter for relevant categories (brainstorming, open_qa, creative_writing)
        relevant_categories = {"brainstorming", "open_qa", "creative_writing", "general_qa"}

        conversations = []
        for item in dataset:
            if item.get("category", "") in relevant_categories:
                instruction = item.get("instruction", "").strip()
                context = item.get("context", "").strip()
                response = item.get("response", "").strip()

                # Combine instruction and context if both exist
                user_message = f"{instruction}\n\n{context}" if context else instruction

                if user_message and response:
                    conversations.append({
                        "messages": [
                            {"role": "user", "content": user_message},
                            {"role": "assistant", "content": response}
                        ]
                    })

        logger.info(f"βœ“ Loaded {len(conversations)} Dolly instruction conversations (filtered from {len(dataset)} total)")
        return conversations
    except Exception as e:
        logger.warning(f"Failed to load Dolly dataset: {e}")
        return []


def load_mentalchat16k() -> List[Dict]:
    """Load ShenLab/MentalChat16K dataset - ALL samples."""
    logger.info(f"Loading MentalChat16K dataset...")
    try:
        dataset = load_dataset("ShenLab/MentalChat16K", split="train")
        logger.info(f"  Dataset has {len(dataset)} samples available")

        conversations = []
        for item in dataset:
            # Try different possible field names
            user_msg = None
            assistant_msg = None

            # Common field name patterns
            for user_field in ["query", "question", "input", "user", "prompt", "instruction"]:
                if user_field in item and item.get(user_field):
                    user_msg = item[user_field].strip()
                    break

            for assistant_field in ["response", "answer", "output", "assistant", "reply"]:
                if assistant_field in item and item.get(assistant_field):
                    assistant_msg = item[assistant_field].strip()
                    break

            if user_msg and assistant_msg:
                conversations.append({
                    "messages": [
                        {"role": "user", "content": user_msg},
                        {"role": "assistant", "content": assistant_msg}
                    ]
                })

        logger.info(f"βœ“ Loaded {len(conversations)} MentalChat16K conversations")
        return conversations
    except Exception as e:
        logger.warning(f"Failed to load MentalChat16K dataset: {e}")
        return []


def load_additional_mental_health_datasets() -> List[Dict]:
    """Load additional mental health datasets - ALL samples."""
    logger.info(f"Loading additional mental health datasets...")

    all_conversations = []

    # List of additional datasets to try
    additional_datasets = [
        ("heliosbrahma/mental_health_chatbot_dataset", ["prompt", "question"], ["response", "answer"]),
        ("mpingale/mental-health-chat-dataset", ["question", "query"], ["answer", "response"]),
        ("sauravjoshi23/psychology-dataset", ["input", "question"], ["output", "answer"]),
    ]

    for dataset_name, user_fields, assistant_fields in additional_datasets:
        try:
            logger.info(f"  Loading {dataset_name}...")
            dataset = load_dataset(dataset_name, split="train")
            logger.info(f"    Has {len(dataset)} samples available")

            for item in dataset:
                # Try different field names
                user_msg = None
                assistant_msg = None

                for field in user_fields:
                    if field in item and item.get(field):
                        user_msg = item[field].strip()
                        break

                for field in assistant_fields:
                    if field in item and item.get(field):
                        assistant_msg = item[field].strip()
                        break

                if user_msg and assistant_msg:
                    all_conversations.append({
                        "messages": [
                            {"role": "user", "content": user_msg},
                            {"role": "assistant", "content": assistant_msg}
                        ]
                    })

            logger.info(f"    βœ“ Loaded {len([c for c in all_conversations if c])} from this dataset")

        except Exception as e:
            logger.warning(f"    Failed: {e}")
            continue

    logger.info(f"βœ“ Loaded {len(all_conversations)} additional mental health conversations total")
    return all_conversations


def quality_filter_conversation(conv: Dict, min_response_length: int = 50, max_total_length: int = 2048) -> bool:
    """Filter conversation based on quality criteria."""
    try:
        messages = conv.get("messages", [])
        if len(messages) < 2:
            return False

        # Check response length
        assistant_msg = [m for m in messages if m.get("role") == "assistant"]
        if not assistant_msg:
            return False

        response = assistant_msg[0].get("content", "")
        if len(response) < min_response_length:
            return False

        # Check total length
        total_length = sum(len(m.get("content", "")) for m in messages)
        if total_length > max_total_length:
            return False

        # Check for empty messages
        if any(not m.get("content", "").strip() for m in messages):
            return False

        return True
    except:
        return False


def load_mixed_dataset(
    total_samples: int = 100000,
    cache_file: str = "mixed_lifecoach_dataset_100k.jsonl.gz",  # Now compressed by default
    use_cache: bool = True
) -> List[Dict]:
    """
    Load and mix multiple datasets for comprehensive life coaching training.
    Saves compressed cache to save disk space.

    Datasets loaded (ALL available samples):
    1. Mental Health Counseling (Amod/mental_health_counseling_conversations)
    2. CounselChat (nbertagnolli/counsel-chat)
    3. CBT Cognitive Distortions (epsilon3/cbt-cognitive-distortions-analysis)
    4. Peer Counseling Reflections (emoneil/reflections-in-peer-counseling)
    5. MentalChat16K (ShenLab/MentalChat16K)
    6. Dolly Instructions (databricks/databricks-dolly-15k - filtered categories)
    7-8. Additional mental health datasets (heliosbrahma, mpingale, sauravjoshi23)
    """
    cache_path = Path(cache_file)
    cache_path_uncompressed = Path(cache_file.replace('.gz', ''))

    # Try to load from compressed cache first
    if use_cache and cache_path.exists():
        logger.info(f"Loading cached dataset from {cache_file} (compressed)...")
        try:
            conversations = []
            with gzip.open(cache_path, 'rt', encoding='utf-8') as f:
                for line in f:
                    conversations.append(json.loads(line.strip()))
            logger.info(f"βœ“ Loaded {len(conversations)} conversations from compressed cache")
            return conversations
        except Exception as e:
            logger.warning(f"Failed to load compressed cache: {e}. Trying uncompressed...")

    # Try uncompressed cache (backward compatibility)
    if use_cache and cache_path_uncompressed.exists():
        logger.info(f"Loading cached dataset from {cache_path_uncompressed} (uncompressed)...")
        try:
            conversations = []
            with open(cache_path_uncompressed, 'r', encoding='utf-8') as f:
                for line in f:
                    conversations.append(json.loads(line.strip()))
            logger.info(f"βœ“ Loaded {len(conversations)} conversations from uncompressed cache")
            return conversations
        except Exception as e:
            logger.warning(f"Failed to load cache: {e}. Rebuilding dataset...")

    # Load ALL available samples from each dataset
    logger.info("=" * 80)
    logger.info(f"LOADING MIXED DATASET (Target: ~{total_samples} samples)")
    logger.info("Loading ALL available samples from each dataset")
    logger.info("=" * 80)

    all_conversations = []

    # Load each dataset ONE AT A TIME and clear cache after each
    # This saves disk space by not keeping all downloads simultaneously

    logger.info("Dataset 1/8: Mental Health Counseling (Amod)")
    all_conversations.extend(load_mental_health_counseling())
    logger.info(f"  Running total: {len(all_conversations)} conversations")
    clear_hf_cache()
    gc.collect()

    # Stop early if we've reached target
    if len(all_conversations) >= total_samples:
        logger.info(f"βœ“ Reached target of {total_samples} samples, stopping dataset loading")
    else:
        logger.info("Dataset 2/8: CounselChat (nbertagnolli)")
        all_conversations.extend(load_counsel_chat())
        logger.info(f"  Running total: {len(all_conversations)} conversations")
        clear_hf_cache()
        gc.collect()

    if len(all_conversations) >= total_samples:
        logger.info(f"βœ“ Reached target of {total_samples} samples, stopping dataset loading")
    else:
        logger.info("Dataset 3/8: CBT Cognitive Distortions (epsilon3)")
        all_conversations.extend(load_cbt_cognitive_distortions())
        logger.info(f"  Running total: {len(all_conversations)} conversations")
        clear_hf_cache()
        gc.collect()

    if len(all_conversations) >= total_samples:
        logger.info(f"βœ“ Reached target of {total_samples} samples, stopping dataset loading")
    else:
        logger.info("Dataset 4/8: Peer Counseling Reflections (emoneil)")
        all_conversations.extend(load_peer_counseling_reflections())
        logger.info(f"  Running total: {len(all_conversations)} conversations")
        clear_hf_cache()
        gc.collect()

    if len(all_conversations) >= total_samples:
        logger.info(f"βœ“ Reached target of {total_samples} samples, stopping dataset loading")
    else:
        logger.info("Dataset 5/8: MentalChat16K (ShenLab)")
        all_conversations.extend(load_mentalchat16k())
        logger.info(f"  Running total: {len(all_conversations)} conversations")
        clear_hf_cache()
        gc.collect()

    if len(all_conversations) >= total_samples:
        logger.info(f"βœ“ Reached target of {total_samples} samples, stopping dataset loading")
    else:
        logger.info("Dataset 6/8: Dolly Instructions (databricks)")
        all_conversations.extend(load_dolly_dataset())
        logger.info(f"  Running total: {len(all_conversations)} conversations")
        clear_hf_cache()
        gc.collect()

    if len(all_conversations) >= total_samples:
        logger.info(f"βœ“ Reached target of {total_samples} samples, stopping dataset loading")
    else:
        logger.info("Datasets 7-8: Additional Mental Health Datasets")
        all_conversations.extend(load_additional_mental_health_datasets())
        logger.info(f"  Running total: {len(all_conversations)} conversations")
        clear_hf_cache()
        gc.collect()

    logger.info("=" * 80)
    logger.info(f"Total conversations loaded: {len(all_conversations)}")

    # Apply quality filtering
    logger.info("Applying quality filters...")
    filtered_conversations = [conv for conv in all_conversations if quality_filter_conversation(conv)]
    logger.info(f"βœ“ After filtering: {len(filtered_conversations)} conversations")

    # Shuffle to mix datasets
    random.shuffle(filtered_conversations)

    # Trim to target size
    if len(filtered_conversations) > total_samples:
        filtered_conversations = filtered_conversations[:total_samples]

    logger.info(f"Final dataset size: {len(filtered_conversations)} conversations")

    # Save compressed cache to save disk space
    if use_cache:
        logger.info(f"Saving compressed cache to {cache_file}...")
        try:
            with gzip.open(cache_path, 'wt', encoding='utf-8') as f:
                for conv in filtered_conversations:
                    f.write(json.dumps(conv, ensure_ascii=False) + '\n')

            # Get file sizes for comparison
            compressed_size_mb = cache_path.stat().st_size / (1024 * 1024)
            logger.info(f"βœ“ Compressed cache saved successfully ({compressed_size_mb:.1f} MB)")
        except Exception as e:
            logger.warning(f"Failed to save compressed cache: {e}")

    logger.info("=" * 80)
    return filtered_conversations


class LifeCoachModel:
    """Life coaching assistant using Phi-4 model."""

    def __init__(
        self,
        model_name: str = "microsoft/Phi-4",
        model_save_path: str = "/data/life_coach_model",
        train_file: str = "cbt_life_coach_improved_50000.jsonl",
        max_length: int = 2048
    ):
        """
        Initialize the Life Coach model.

        Args:
            model_name: Hugging Face model identifier
            model_save_path: Path to save/load fine-tuned model
            train_file: Path to training data file (JSONL format)
            max_length: Maximum sequence length for training
        """
        self.model_name = model_name

        # Check if /data is writable, otherwise use local directory
        save_path = Path(model_save_path)
        if str(save_path).startswith("/data"):
            try:
                Path("/data").mkdir(parents=True, exist_ok=True)
                # Test write permissions
                test_file = Path("/data/.test_write")
                test_file.touch()
                test_file.unlink()
                self.model_save_path = save_path
                logger.info(f"Using /data directory for model storage: {save_path}")
            except (PermissionError, OSError) as e:
                # Fall back to local directory
                local_path = Path("./data/life_coach_model")
                logger.warning(f"/data directory not writable ({e}), using local directory: {local_path}")
                self.model_save_path = local_path
        else:
            self.model_save_path = save_path

        self.train_file = Path(train_file)
        self.max_length = max_length
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        logger.info(f"Device: {self.device}")
        logger.info(f"Model: {model_name}")
        logger.info(f"Save path: {self.model_save_path}")
        logger.info(f"Training file: {self.train_file}")

        self.tokenizer = None
        self.model = None

    def load_tokenizer(self):
        """Carica il tokenizer da /data/hf_cache (persistente) o scaricalo una volta."""
        logger.info("Loading tokenizer...")
        
        cache_dir = "/data/hf_cache"
        os.makedirs(cache_dir, exist_ok=True)

        try:
            self.tokenizer = AutoTokenizer.from_pretrained(
                self.model_name,
                cache_dir=cache_dir,
                local_files_only=False,  # Permette download solo se non esiste
                trust_remote_code=True,
                use_fast=True
            )
            logger.info(f"Tokenizer caricato (cache: {cache_dir})")
        except Exception as e:
            logger.error(f"Errore critico nel caricamento tokenizer: {e}")
            raise
    def load_model(self, fine_tuned=True):
        """Load the fine-tuned model with safe settings for HF Spaces."""
        logger.info(f"Loading {'fine-tuned' if fine_tuned else 'base'} model from {self.model_save_path}")

        # Forza impostazioni sicure
        import torch
        from transformers import AutoModelForCausalLM
        from peft import PeftModel
    
        base_model_name = self.model_name

        # Carica modello base con device_map e offload
        base_model = AutoModelForCausalLM.from_pretrained(
            base_model_name,
            torch_dtype=torch.float16,
            device_map="auto",
            trust_remote_code=True,
            low_cpu_mem_usage=True,
            offload_folder="/tmp/offload",  # Usa /tmp per offload
            cache_dir="/data/hf_cache"
        )

        if fine_tuned:
            logger.info(f"Loading adapter from {self.model_save_path}")
            self.model = PeftModel.from_pretrained(
                base_model,
                self.model_save_path,
                device_map="auto",
                offload_folder="/tmp/offload",
                torch_dtype=torch.float16
            )
        else:
            self.model = base_model

        self.model.eval()
        logger.info("Model loaded successfully!")

    def load_training_data(self, num_samples: Optional[int] = None) -> Dataset:
        """
        Load training data from mixed datasets or JSONL file.

        Args:
            num_samples: Number of samples to load (None for 100,000 default)

        Returns:
            Dataset object
        """
        # Try to load from mixed datasets first (new method)
        # If train_file doesn't exist or is the old one, use mixed datasets
        use_mixed_datasets = True

        if self.train_file.exists():
            # Check if it's the old single dataset file
            if "cbt_life_coach" in str(self.train_file):
                logger.info("Found old training file. Using new mixed datasets instead...")
                use_mixed_datasets = True
            else:
                # It might be a cached mixed dataset
                logger.info(f"Found training file at {self.train_file}")
                use_mixed_datasets = False

        if use_mixed_datasets:
            # Load mixed datasets from Hugging Face
            logger.info("Loading mixed datasets from Hugging Face...")
            if num_samples is None:
                num_samples = 100000  # Default to 100k samples

            # Load mixed dataset (will use cache if available)
            cache_file = f"mixed_lifecoach_dataset_{num_samples}.jsonl.gz"  # Compressed format
            data = load_mixed_dataset(
                total_samples=num_samples,
                cache_file=cache_file,
                use_cache=True
            )
        else:
            # Fall back to loading from JSONL file
            logger.info(f"Loading training data from {self.train_file}")
            data = []
            with open(self.train_file, 'r', encoding='utf-8') as f:
                for i, line in enumerate(f):
                    if num_samples and i >= num_samples:
                        break
                    try:
                        data.append(json.loads(line.strip()))
                    except json.JSONDecodeError:
                        logger.warning(f"Skipping invalid JSON at line {i+1}")

        logger.info(f"Loaded {len(data)} training examples")

        # Convert to Hugging Face Dataset
        dataset = Dataset.from_list(data)

        # Preprocess for Phi-4 format
        logger.info("Preprocessing data for Phi-4 format...")
        dataset = dataset.map(
            self._preprocess_function,
            batched=True,
            remove_columns=dataset.column_names,
            desc="Tokenizing"
        )

        return dataset

    def _preprocess_function(self, examples):
        """
        Preprocess data into Phi-4 chat format.

        Phi-4 uses:
        <|system|>
        {system message}<|end|>
        <|user|>
        {user message}<|end|>
        <|assistant|>
        {assistant response}<|end|>
        """
        texts = []

        # Handle both 'conversations' (our format) and 'messages' (standard format)
        conversations_key = 'conversations' if 'conversations' in examples else 'messages'

        for conversation in examples[conversations_key]:
            text = ""
            for message in conversation:
                # Handle both 'from'/'value' and 'role'/'content' formats
                if 'from' in message:
                    role = message['from']
                    content = message['value']
                else:
                    role = message['role']
                    content = message['content']

                # Convert to Phi-4 format
                if role == 'system':
                    text += f"<|system|>\n{content}<|end|>\n"
                elif role == 'user':
                    text += f"<|user|>\n{content}<|end|>\n"
                elif role == 'assistant':
                    text += f"<|assistant|>\n{content}<|end|>\n"

            texts.append(text)

        # Tokenize with dynamic padding (like quantum server)
        # Don't pad here - let DataCollatorForSeq2Seq handle it dynamically per batch
        model_inputs = self.tokenizer(
            texts,
            max_length=self.max_length,
            truncation=True,
            padding=False,  # Dynamic padding - saves massive memory!
            return_tensors=None  # Don't convert to tensors yet
        )

        # Set labels (for causal language modeling, labels = input_ids)
        # Note: .copy() instead of .clone() since we're not using tensors yet
        model_inputs["labels"] = model_inputs["input_ids"].copy()

        return model_inputs

    def setup_lora(self):
        """Setup LoRA (Low-Rank Adaptation) for efficient fine-tuning."""
        logger.info("Setting up LoRA adapters...")

        # Prepare model for k-bit training (critical for load_in_8bit=True)
        logger.info("Preparing model for 8-bit training...")
        self.model = prepare_model_for_kbit_training(self.model)

        # Enable gradient checkpointing to save GPU memory
        # This reduces memory usage by 20-30 GB with minimal performance impact
        if hasattr(self.model, 'gradient_checkpointing_enable'):
            self.model.gradient_checkpointing_enable()
            logger.info("βœ“ Gradient checkpointing enabled (saves 20-30 GB GPU memory)")

        # LoRA configuration
        lora_config = LoraConfig(
            task_type=TaskType.CAUSAL_LM,
            r=16,  # Rank
            lora_alpha=32,
            lora_dropout=0.1,
            bias="none",
            target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]  # Attention layers
        )

        # Apply LoRA
        self.model = get_peft_model(self.model, lora_config)

        # Print trainable parameters
        trainable_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
        total_params = sum(p.numel() for p in self.model.parameters())

        logger.info(f"Trainable parameters: {trainable_params:,} / {total_params:,} "
                   f"({100 * trainable_params / total_params:.2f}%)")

    def fine_tune(
        self,
        num_samples: Optional[int] = 5000,
        epochs: int = 3,
        batch_size: int = 8,
        learning_rate: float = 5e-5,
        gradient_accumulation_steps: int = 2
    ):
        """
        Fine-tune the model on life coaching data.

        Args:
            num_samples: Number of training samples (None for all)
            epochs: Number of training epochs
            batch_size: Training batch size
            learning_rate: Learning rate
            gradient_accumulation_steps: Gradient accumulation steps (for memory efficiency)
        """
        logger.info("=" * 80)
        logger.info("STARTING FINE-TUNING")
        logger.info("=" * 80)

        # Load data
        dataset = self.load_training_data(num_samples)

        # Setup LoRA
        self.setup_lora()

        # Training arguments
        training_args = TrainingArguments(
            output_dir="./training_output",
            num_train_epochs=epochs,
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            learning_rate=learning_rate,
            fp16=True,  # Mixed precision training
            logging_steps=10,
            save_strategy="epoch",
            save_total_limit=2,
            warmup_steps=100,
            weight_decay=0.01,
            report_to="none",  # Disable wandb/tensorboard
        )

        # Data collator
        data_collator = DataCollatorForSeq2Seq(
            tokenizer=self.tokenizer,
            model=self.model,
            padding=True
        )

        # Trainer
        trainer = Trainer(
            model=self.model,
            args=training_args,
            train_dataset=dataset,
            data_collator=data_collator,
        )

        # Train
        logger.info("Training started...")
        trainer.train()

        logger.info("=" * 80)
        logger.info("TRAINING COMPLETED")
        logger.info("=" * 80)

        # Save model
        self.save_model()

    def save_model(self):
        """Save the fine-tuned model to disk."""
        logger.info(f"Saving model to {self.model_save_path}")

        self.model_save_path.mkdir(parents=True, exist_ok=True)

        # Save model and tokenizer
        self.model.save_pretrained(str(self.model_save_path))
        self.tokenizer.save_pretrained(str(self.model_save_path))

        logger.info("Model saved successfully")

    def generate_response(self, prompt: str, max_new_tokens: int = 128, conversation_history: list = None) -> str:
        """
        Generate a response to a user prompt.

        Args:
            prompt: User's input message
            max_new_tokens: Maximum tokens to generate
            conversation_history: List of previous messages for context

        Returns:
            Generated response
        """
        # Build full conversation context with system prompt
        formatted_prompt = ""

        # Add system prompt to guide the model's behavior
        system_prompt = """You are Robert, a friendly and experienced life coach. Here's your background:

About You:
- Name: Robert (Bob to friends)
- Age: 42 years old
- Experience: 15 years as a certified life coach and motivational speaker
- Education: Master's degree in Psychology from UC Berkeley
- Specialties: Personal growth, career transitions, work-life balance, goal setting, stress management
- Personal: Married with two kids, enjoy hiking and meditation in your free time
- Approach: Warm, empathetic, practical, and solution-focused

Your Coaching Style:
- Respond ONLY to what the user actually tells you - never make assumptions about their problems
- Start conversations in a welcoming, open manner
- Ask clarifying questions to understand their situation better
- Provide practical, actionable advice based on what they share
- Be encouraging and positive, but also honest and realistic
- Keep responses concise and focused (2-4 sentences usually)
- Share brief personal insights when relevant, but keep the focus on the client

Important: Never assume clients have problems they haven't mentioned. Let them guide the conversation and share what's on their mind."""

        formatted_prompt += f"<|system|>\n{system_prompt}<|end|>\n"

        # Add conversation history if provided
        if conversation_history:
            for msg in conversation_history:
                if msg["role"] == "user":
                    formatted_prompt += f"<|user|>\n{msg['content']}<|end|>\n"
                elif msg["role"] == "assistant":
                    formatted_prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"

        # Add current prompt
        formatted_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"

        # DEBUG: Print the full prompt being sent to the model
        logger.info("=" * 80)
        logger.info("FULL PROMPT SENT TO MODEL:")
        logger.info(formatted_prompt)
        logger.info("=" * 80)

        # Tokenize
        inputs = self.tokenizer(
            formatted_prompt,
            return_tensors="pt",
            truncation=True,
            max_length=self.max_length
        ).to(self.device)

        # Get input length to extract only new tokens
        input_length = inputs['input_ids'].shape[1]

        # Get the token ID for <|end|> to use as a stopping token
        end_token_id = self.tokenizer.convert_tokens_to_ids("<|end|>")

        # Build list of EOS token IDs (stop generation at <|end|> or EOS)
        eos_token_ids = [self.tokenizer.eos_token_id]
        if end_token_id is not None and end_token_id != self.tokenizer.unk_token_id:
            eos_token_ids.append(end_token_id)

        # Generate
        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=max_new_tokens,
                temperature=0.7,  # Balanced - coherent but still creative
                top_p=0.9,  # Standard setting for focused responses
                top_k=50,  # Add top-k sampling
                do_sample=True,
                pad_token_id=self.tokenizer.pad_token_id,
                eos_token_id=eos_token_ids,  # Stop at <|end|> or EOS
                repetition_penalty=1.15  # Stronger penalty to prevent repetition
            )

        # Decode ONLY the newly generated tokens (not the input)
        generated_tokens = outputs[0][input_length:]

        # Decode without skipping special tokens first to find the end marker
        response_with_tokens = self.tokenizer.decode(generated_tokens, skip_special_tokens=False)

        # Extract only up to the first <|end|> token (model may generate multi-turn conversations)
        if "<|end|>" in response_with_tokens:
            response_text = response_with_tokens.split("<|end|>")[0]
        else:
            response_text = response_with_tokens

        # Clean up any remaining special tokens
        response_text = response_text.replace("<|assistant|>", "").replace("<|user|>", "").replace("<|system|>", "")

        # Remove any remaining special tokens using the tokenizer
        response_text = response_text.strip()

        return response_text

    def interactive_chat(self):
        """Start an interactive chat session."""
        logger.info("=" * 80)
        logger.info("LIFE COACH V1 - Interactive Chat Session")
        logger.info("=" * 80)
        print("\nWelcome to Life Coach v1!")
        print("I'm here to help you with life coaching, goal setting, motivation, and personal growth.")
        print("\nCommands:")
        print("  - Type your question or concern to get coaching advice")
        print("  - Type 'quit' or 'exit' to end the session")
        print("  - Type 'clear' to clear conversation history")
        print("=" * 80)
        print()

        conversation_history = []

        while True:
            try:
                # Get user input
                user_input = input("\nπŸ§‘ You: ").strip()

                if not user_input:
                    continue

                # Check for exit commands
                if user_input.lower() in ['quit', 'exit', 'q']:
                    print("\nπŸ‘‹ Thank you for using Life Coach v1. Take care!")
                    break

                # Check for clear command
                if user_input.lower() == 'clear':
                    conversation_history = []
                    print("βœ… Conversation history cleared.")
                    continue

                # Generate response with conversation context
                print("\nπŸ€– Life Coach: ", end="", flush=True)
                response = self.generate_response(user_input, conversation_history=conversation_history)
                print(response)

                # Update conversation history
                conversation_history.append({
                    "role": "user",
                    "content": user_input
                })
                conversation_history.append({
                    "role": "assistant",
                    "content": response
                })

            except KeyboardInterrupt:
                print("\n\nπŸ‘‹ Session interrupted. Goodbye!")
                break
            except Exception as e:
                logger.error(f"Error during chat: {e}")
                print(f"\n❌ Error: {e}")


def main():
    """Main entry point."""
    parser = argparse.ArgumentParser(
        description="Life Coach v1 - Phi-4 based life coaching assistant"
    )

    parser.add_argument(
        "--mode",
        type=str,
        choices=["train", "chat", "both"],
        default="both",
        help="Mode: train (fine-tune only), chat (chat only), both (train then chat)"
    )

    parser.add_argument(
        "--model-name",
        type=str,
        default="microsoft/Phi-4",
        help="Hugging Face model name"
    )

    parser.add_argument(
        "--model-path",
        type=str,
        default="/data/life_coach_model",
        help="Path to save/load fine-tuned model"
    )

    parser.add_argument(
        "--train-file",
        type=str,
        default="cbt_life_coach_improved_50000.jsonl",
        help="Path to training data file (JSONL format)"
    )

    parser.add_argument(
        "--num-samples",
        type=int,
        default=-1,
        help="Number of training samples (default: -1 for all 100,000 from mixed datasets)"
    )

    parser.add_argument(
        "--epochs",
        type=int,
        default=3,
        help="Number of training epochs"
    )

    parser.add_argument(
        "--batch-size",
        type=int,
        default=4,
        help="Training batch size (default: 4 for memory safety)"
    )

    parser.add_argument(
        "--learning-rate",
        type=float,
        default=5e-5,
        help="Learning rate (default: 5e-5, matching quantum server)"
    )

    parser.add_argument(
        "--gradient-accumulation",
        type=int,
        default=4,
        help="Gradient accumulation steps (default: 4, effective batch=16)"
    )

    parser.add_argument(
        "--force-retrain",
        action="store_true",
        help="Force retraining even if fine-tuned model exists"
    )

    args = parser.parse_args()

    # Clean up GPU memory before starting
    cleanup_gpu_memory()

    # Initialize model
    coach = LifeCoachModel(
        model_name=args.model_name,
        model_save_path=args.model_path,
        train_file=args.train_file
    )

    # Load tokenizer
    coach.load_tokenizer()

    # Check if fine-tuned model already exists
    model_exists = coach.model_save_path.exists() and (coach.model_save_path / "adapter_model.safetensors").exists()

    # Training mode
    if args.mode in ["train", "both"]:
        # Check if we should skip training
        if model_exists and not args.force_retrain:
            logger.info("=" * 80)
            logger.info("FINE-TUNED MODEL ALREADY EXISTS")
            logger.info("=" * 80)
            logger.info(f"Found existing model at: {coach.model_save_path}")
            logger.info("Skipping training. Loading existing model...")
            logger.info("(Use --force-retrain to retrain from scratch)")
            logger.info("=" * 80)

            # Load the existing fine-tuned model
            coach.load_model(fine_tuned=True)
        else:
            if args.force_retrain and model_exists:
                logger.info("=" * 80)
                logger.info("FORCING RETRAINING (--force-retrain flag set)")
                logger.info("=" * 80)

            # Load base model for training
            coach.load_model(fine_tuned=False)

            # Fine-tune
            num_samples = None if args.num_samples == -1 else args.num_samples
            coach.fine_tune(
                num_samples=num_samples,
                epochs=args.epochs,
                batch_size=args.batch_size,
                learning_rate=args.learning_rate,
                gradient_accumulation_steps=args.gradient_accumulation
            )

            # For "both" mode, reload the fine-tuned model for chat
            if args.mode == "both":
                logger.info("Reloading fine-tuned model for chat...")
                coach.load_model(fine_tuned=True)

        # If only training mode, exit
        if args.mode == "train":
            logger.info("Training complete. Use --mode chat to start chatting.")
            return

    # Chat mode
    elif args.mode == "chat":
        if not model_exists:
            logger.error("=" * 80)
            logger.error("ERROR: No fine-tuned model found!")
            logger.error("=" * 80)
            logger.error(f"Expected location: {coach.model_save_path}")
            logger.error("Please train the model first using:")
            logger.error("  python3 life_coach_v1.py --mode train")
            logger.error("=" * 80)
            return

        # Load fine-tuned model
        logger.info(f"Loading fine-tuned model from {coach.model_save_path}")
        coach.load_model(fine_tuned=True)

    # Start interactive chat
    coach.interactive_chat()


if __name__ == "__main__":
    main()