Spaces:
Sleeping
Sleeping
| import sys | |
| import os | |
| sys.path.append(os.path.join(os.path.dirname(__file__), 'relation-extraction-master')) | |
| import re | |
| import torch | |
| from gqlalchemy import Memgraph | |
| from relation_extraction.hparams import hparams | |
| from relation_extraction.model import SentenceRE | |
| from relation_extraction.data_utils import MyTokenizer, get_idx2tag, convert_pos_to_mask | |
| # 云端Memgraph连接参数 | |
| MEMGRAPH_HOST = '18.159.132.161' | |
| MEMGRAPH_PORT = 7687 | |
| MEMGRAPH_USERNAME = 'b300000.de@gmail.com' | |
| MEMGRAPH_PASSWORD = '159951Tjk.' # 请替换为你的真实密码 | |
| MEMGRAPH_ENCRYPTED = True | |
| # 连接memgraph云数据库 | |
| def get_memgraph_conn(): | |
| return Memgraph( | |
| MEMGRAPH_HOST, | |
| MEMGRAPH_PORT, | |
| MEMGRAPH_USERNAME, | |
| MEMGRAPH_PASSWORD, | |
| encrypted=MEMGRAPH_ENCRYPTED | |
| ) | |
| # 单句预测,返回三元组 | |
| class RelationPredictor: | |
| def __init__(self, hparams): | |
| self.device = hparams.device | |
| torch.manual_seed(hparams.seed) | |
| self.idx2tag = get_idx2tag(hparams.tagset_file) | |
| hparams.tagset_size = len(self.idx2tag) | |
| self.model = SentenceRE(hparams).to(self.device) | |
| self.model.load_state_dict(torch.load(hparams.model_file)) | |
| self.model.eval() | |
| self.tokenizer = MyTokenizer(hparams.pretrained_model_path) | |
| def predict_one(self, text, entity1, entity2): | |
| match_obj1 = re.search(entity1, text) | |
| match_obj2 = re.search(entity2, text) | |
| if not (match_obj1 and match_obj2): | |
| return None | |
| e1_pos = match_obj1.span() | |
| e2_pos = match_obj2.span() | |
| item = { | |
| 'h': {'name': entity1, 'pos': e1_pos}, | |
| 't': {'name': entity2, 'pos': e2_pos}, | |
| 'text': text | |
| } | |
| tokens, pos_e1, pos_e2 = self.tokenizer.tokenize(item) | |
| encoded = self.tokenizer.bert_tokenizer.batch_encode_plus([(tokens, None)], return_tensors='pt') | |
| input_ids = encoded['input_ids'].to(self.device) | |
| token_type_ids = encoded['token_type_ids'].to(self.device) | |
| attention_mask = encoded['attention_mask'].to(self.device) | |
| e1_mask = torch.tensor([convert_pos_to_mask(pos_e1, max_len=attention_mask.shape[1])]).to(self.device) | |
| e2_mask = torch.tensor([convert_pos_to_mask(pos_e2, max_len=attention_mask.shape[1])]).to(self.device) | |
| with torch.no_grad(): | |
| logits = self.model(input_ids, token_type_ids, attention_mask, e1_mask, e2_mask)[0] | |
| logits = logits.to(torch.device('cpu')) | |
| relation = self.idx2tag[logits.argmax(0).item()] | |
| return entity1, relation, entity2 | |
| # 写入memgraph | |
| def insert_to_memgraph(memgraph, entity1, relation, entity2): | |
| memgraph.execute( | |
| "MERGE (a:Entity {name: $name1})", | |
| {"name1": entity1} | |
| ) | |
| memgraph.execute( | |
| "MERGE (b:Entity {name: $name2})", | |
| {"name2": entity2} | |
| ) | |
| memgraph.execute( | |
| f"MATCH (a:Entity {{name: $name1}}), (b:Entity {{name: $name2}}) MERGE (a)-[:{relation}]->(b)", | |
| {"name1": entity1, "name2": entity2} | |
| ) | |
| # 主流程 | |
| def main(): | |
| memgraph = get_memgraph_conn() | |
| predictor = RelationPredictor(hparams) | |
| print("请输入句子和两个实体,识别关系并写入Memgraph。输入exit退出。") | |
| while True: | |
| text = input("输入中文句子:") | |
| if text.strip().lower() == 'exit': | |
| break | |
| entity1 = input("句子中的实体1:") | |
| if entity1.strip().lower() == 'exit': | |
| break | |
| entity2 = input("句子中的实体2:") | |
| if entity2.strip().lower() == 'exit': | |
| break | |
| result = predictor.predict_one(text, entity1, entity2) | |
| if result is None: | |
| print("实体未在句子中找到,请重试。") | |
| continue | |
| entity1, relation, entity2 = result | |
| insert_to_memgraph(memgraph, entity1, relation, entity2) | |
| print(f"已写入Memgraph:({entity1})-[:{relation}]->({entity2})") | |
| if __name__ == '__main__': | |
| main() | |