Spaces:
Runtime error
Runtime error
| import torch.nn as nn | |
| from segment_anything.modeling.common import LayerNorm2d, UpSampleLayer, OpSequential | |
| __all__ = ['rep_vit_m1', 'rep_vit_m2', 'rep_vit_m3', 'RepViT'] | |
| m1_cfgs = [ | |
| # k, t, c, SE, HS, s | |
| [3, 2, 48, 1, 0, 1], | |
| [3, 2, 48, 0, 0, 1], | |
| [3, 2, 48, 0, 0, 1], | |
| [3, 2, 96, 0, 0, 2], | |
| [3, 2, 96, 1, 0, 1], | |
| [3, 2, 96, 0, 0, 1], | |
| [3, 2, 96, 0, 0, 1], | |
| [3, 2, 192, 0, 1, 2], | |
| [3, 2, 192, 1, 1, 1], | |
| [3, 2, 192, 0, 1, 1], | |
| [3, 2, 192, 1, 1, 1], | |
| [3, 2, 192, 0, 1, 1], | |
| [3, 2, 192, 1, 1, 1], | |
| [3, 2, 192, 0, 1, 1], | |
| [3, 2, 192, 1, 1, 1], | |
| [3, 2, 192, 0, 1, 1], | |
| [3, 2, 192, 1, 1, 1], | |
| [3, 2, 192, 0, 1, 1], | |
| [3, 2, 192, 1, 1, 1], | |
| [3, 2, 192, 0, 1, 1], | |
| [3, 2, 192, 1, 1, 1], | |
| [3, 2, 192, 0, 1, 1], | |
| [3, 2, 192, 0, 1, 1], | |
| [3, 2, 384, 0, 1, 2], | |
| [3, 2, 384, 1, 1, 1], | |
| [3, 2, 384, 0, 1, 1] | |
| ] | |
| m2_cfgs = [ | |
| # k, t, c, SE, HS, s | |
| [3, 2, 64, 1, 0, 1], | |
| [3, 2, 64, 0, 0, 1], | |
| [3, 2, 64, 0, 0, 1], | |
| [3, 2, 128, 0, 0, 2], | |
| [3, 2, 128, 1, 0, 1], | |
| [3, 2, 128, 0, 0, 1], | |
| [3, 2, 128, 0, 0, 1], | |
| [3, 2, 256, 0, 1, 2], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 512, 0, 1, 2], | |
| [3, 2, 512, 1, 1, 1], | |
| [3, 2, 512, 0, 1, 1] | |
| ] | |
| m3_cfgs = [ | |
| # k, t, c, SE, HS, s | |
| [3, 2, 64, 1, 0, 1], | |
| [3, 2, 64, 0, 0, 1], | |
| [3, 2, 64, 1, 0, 1], | |
| [3, 2, 64, 0, 0, 1], | |
| [3, 2, 64, 0, 0, 1], | |
| [3, 2, 128, 0, 0, 2], | |
| [3, 2, 128, 1, 0, 1], | |
| [3, 2, 128, 0, 0, 1], | |
| [3, 2, 128, 1, 0, 1], | |
| [3, 2, 128, 0, 0, 1], | |
| [3, 2, 128, 0, 0, 1], | |
| [3, 2, 256, 0, 1, 2], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 1, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 256, 0, 1, 1], | |
| [3, 2, 512, 0, 1, 2], | |
| [3, 2, 512, 1, 1, 1], | |
| [3, 2, 512, 0, 1, 1] | |
| ] | |
| def _make_divisible(v, divisor, min_value=None): | |
| """ | |
| This function is taken from the original tf repo. | |
| It ensures that all layers have a channel number that is divisible by 8 | |
| It can be seen here: | |
| https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py | |
| :param v: | |
| :param divisor: | |
| :param min_value: | |
| :return: | |
| """ | |
| if min_value is None: | |
| min_value = divisor | |
| new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
| # Make sure that round down does not go down by more than 10%. | |
| if new_v < 0.9 * v: | |
| new_v += divisor | |
| return new_v | |
| from timm.models.layers import SqueezeExcite | |
| import torch | |
| class Conv2d_BN(torch.nn.Sequential): | |
| def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, | |
| groups=1, bn_weight_init=1, resolution=-10000): | |
| super().__init__() | |
| self.add_module('c', torch.nn.Conv2d( | |
| a, b, ks, stride, pad, dilation, groups, bias=False)) | |
| self.add_module('bn', torch.nn.BatchNorm2d(b)) | |
| torch.nn.init.constant_(self.bn.weight, bn_weight_init) | |
| torch.nn.init.constant_(self.bn.bias, 0) | |
| def fuse(self): | |
| c, bn = self._modules.values() | |
| w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| w = c.weight * w[:, None, None, None] | |
| b = bn.bias - bn.running_mean * bn.weight / \ | |
| (bn.running_var + bn.eps) ** 0.5 | |
| m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size( | |
| 0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, | |
| groups=self.c.groups, | |
| device=c.weight.device) | |
| m.weight.data.copy_(w) | |
| m.bias.data.copy_(b) | |
| return m | |
| class Residual(torch.nn.Module): | |
| def __init__(self, m, drop=0.): | |
| super().__init__() | |
| self.m = m | |
| self.drop = drop | |
| def forward(self, x): | |
| if self.training and self.drop > 0: | |
| return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1, | |
| device=x.device).ge_(self.drop).div(1 - self.drop).detach() | |
| else: | |
| return x + self.m(x) | |
| def fuse(self): | |
| if isinstance(self.m, Conv2d_BN): | |
| m = self.m.fuse() | |
| assert (m.groups == m.in_channels) | |
| identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1) | |
| identity = torch.nn.functional.pad(identity, [1, 1, 1, 1]) | |
| m.weight += identity.to(m.weight.device) | |
| return m | |
| elif isinstance(self.m, torch.nn.Conv2d): | |
| m = self.m | |
| assert (m.groups != m.in_channels) | |
| identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1) | |
| identity = torch.nn.functional.pad(identity, [1, 1, 1, 1]) | |
| m.weight += identity.to(m.weight.device) | |
| return m | |
| else: | |
| return self | |
| class RepVGGDW(torch.nn.Module): | |
| def __init__(self, ed) -> None: | |
| super().__init__() | |
| self.conv = Conv2d_BN(ed, ed, 3, 1, 1, groups=ed) | |
| self.conv1 = Conv2d_BN(ed, ed, 1, 1, 0, groups=ed) | |
| self.dim = ed | |
| def forward(self, x): | |
| return self.conv(x) + self.conv1(x) + x | |
| def fuse(self): | |
| conv = self.conv.fuse() | |
| conv1 = self.conv1.fuse() | |
| conv_w = conv.weight | |
| conv_b = conv.bias | |
| conv1_w = conv1.weight | |
| conv1_b = conv1.bias | |
| conv1_w = torch.nn.functional.pad(conv1_w, [1, 1, 1, 1]) | |
| identity = torch.nn.functional.pad(torch.ones(conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device), | |
| [1, 1, 1, 1]) | |
| final_conv_w = conv_w + conv1_w + identity | |
| final_conv_b = conv_b + conv1_b | |
| conv.weight.data.copy_(final_conv_w) | |
| conv.bias.data.copy_(final_conv_b) | |
| return conv | |
| class RepViTBlock(nn.Module): | |
| def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs, skip_downsample=False): | |
| super(RepViTBlock, self).__init__() | |
| assert stride in [1, 2] | |
| self.identity = stride == 1 and inp == oup | |
| assert (hidden_dim == 2 * inp) | |
| if stride == 2: | |
| if skip_downsample: | |
| stride = 1 | |
| self.token_mixer = nn.Sequential( | |
| Conv2d_BN(inp, inp, kernel_size, stride, (kernel_size - 1) // 2, groups=inp), | |
| SqueezeExcite(inp, 0.25) if use_se else nn.Identity(), | |
| Conv2d_BN(inp, oup, ks=1, stride=1, pad=0) | |
| ) | |
| self.channel_mixer = Residual(nn.Sequential( | |
| # pw | |
| Conv2d_BN(oup, 2 * oup, 1, 1, 0), | |
| nn.GELU() if use_hs else nn.GELU(), | |
| # pw-linear | |
| Conv2d_BN(2 * oup, oup, 1, 1, 0, bn_weight_init=0), | |
| )) | |
| else: | |
| assert (self.identity) | |
| self.token_mixer = nn.Sequential( | |
| RepVGGDW(inp), | |
| SqueezeExcite(inp, 0.25) if use_se else nn.Identity(), | |
| ) | |
| self.channel_mixer = Residual(nn.Sequential( | |
| # pw | |
| Conv2d_BN(inp, hidden_dim, 1, 1, 0), | |
| nn.GELU() if use_hs else nn.GELU(), | |
| # pw-linear | |
| Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0), | |
| )) | |
| def forward(self, x): | |
| return self.channel_mixer(self.token_mixer(x)) | |
| from timm.models.vision_transformer import trunc_normal_ | |
| class BN_Linear(torch.nn.Sequential): | |
| def __init__(self, a, b, bias=True, std=0.02): | |
| super().__init__() | |
| self.add_module('bn', torch.nn.BatchNorm1d(a)) | |
| self.add_module('l', torch.nn.Linear(a, b, bias=bias)) | |
| trunc_normal_(self.l.weight, std=std) | |
| if bias: | |
| torch.nn.init.constant_(self.l.bias, 0) | |
| def fuse(self): | |
| bn, l = self._modules.values() | |
| w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| b = bn.bias - self.bn.running_mean * \ | |
| self.bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| w = l.weight * w[None, :] | |
| if l.bias is None: | |
| b = b @ self.l.weight.T | |
| else: | |
| b = (l.weight @ b[:, None]).view(-1) + self.l.bias | |
| m = torch.nn.Linear(w.size(1), w.size(0), device=l.weight.device) | |
| m.weight.data.copy_(w) | |
| m.bias.data.copy_(b) | |
| return m | |
| class RepViT(nn.Module): | |
| arch_settings = { | |
| 'm1': m1_cfgs, | |
| 'm2': m2_cfgs, | |
| 'm3': m3_cfgs | |
| } | |
| def __init__(self, arch, img_size=1024, upsample_mode='bicubic'): | |
| super(RepViT, self).__init__() | |
| # setting of inverted residual blocks | |
| self.cfgs = self.arch_settings[arch] | |
| self.img_size = img_size | |
| # building first layer | |
| input_channel = self.cfgs[0][2] | |
| patch_embed = torch.nn.Sequential(Conv2d_BN(3, input_channel // 2, 3, 2, 1), torch.nn.GELU(), | |
| Conv2d_BN(input_channel // 2, input_channel, 3, 2, 1)) | |
| layers = [patch_embed] | |
| # building inverted residual blocks | |
| block = RepViTBlock | |
| self.stage_idx = [] | |
| prev_c = input_channel | |
| for idx, (k, t, c, use_se, use_hs, s) in enumerate(self.cfgs): | |
| output_channel = _make_divisible(c, 8) | |
| exp_size = _make_divisible(input_channel * t, 8) | |
| skip_downsample = False | |
| if c != prev_c: | |
| self.stage_idx.append(idx - 1) | |
| prev_c = c | |
| layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs, skip_downsample)) | |
| input_channel = output_channel | |
| self.stage_idx.append(idx) | |
| self.features = nn.ModuleList(layers) | |
| stage2_channels = _make_divisible(self.cfgs[self.stage_idx[2]][2], 8) | |
| stage3_channels = _make_divisible(self.cfgs[self.stage_idx[3]][2], 8) | |
| self.fuse_stage2 = nn.Conv2d(stage2_channels, 256, kernel_size=1, bias=False) | |
| self.fuse_stage3 = OpSequential([ | |
| nn.Conv2d(stage3_channels, 256, kernel_size=1, bias=False), | |
| UpSampleLayer(factor=2, mode=upsample_mode), | |
| ]) | |
| self.neck = nn.Sequential( | |
| nn.Conv2d(256, 256, kernel_size=1, bias=False), | |
| LayerNorm2d(256), | |
| nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=False), | |
| LayerNorm2d(256), | |
| ) | |
| def forward(self, x): | |
| counter = 0 | |
| output_dict = dict() | |
| # patch_embed | |
| x = self.features[0](x) | |
| output_dict['stem'] = x | |
| # stages | |
| for idx, f in enumerate(self.features[1:]): | |
| x = f(x) | |
| if idx in self.stage_idx: | |
| output_dict[f'stage{counter}'] = x | |
| counter += 1 | |
| x = self.fuse_stage2(output_dict['stage2']) + self.fuse_stage3(output_dict['stage3']) | |
| x = self.neck(x) | |
| return x | |
| def rep_vit_m1(img_size=1024, **kwargs): | |
| return RepViT('m1', img_size, **kwargs) | |
| def rep_vit_m2(img_size=1024, **kwargs): | |
| return RepViT('m2', img_size, **kwargs) | |
| def rep_vit_m3(img_size=1024, **kwargs): | |
| return RepViT('m3', img_size, **kwargs) |