Spaces:
Runtime error
Runtime error
Commit
·
a7bed20
1
Parent(s):
8611f7d
update
Browse files
stable_diffusion/ldm/modules/encoders/modules.py
CHANGED
|
@@ -5,9 +5,11 @@ import clip
|
|
| 5 |
from einops import rearrange, repeat
|
| 6 |
from transformers import CLIPTokenizer, CLIPTextModel, CLIPVisionModel, CLIPModel
|
| 7 |
import kornia
|
|
|
|
| 8 |
|
| 9 |
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
class AbstractEncoder(nn.Module):
|
| 13 |
def __init__(self):
|
|
@@ -35,7 +37,7 @@ class ClassEmbedder(nn.Module):
|
|
| 35 |
|
| 36 |
class TransformerEmbedder(AbstractEncoder):
|
| 37 |
"""Some transformer encoder layers"""
|
| 38 |
-
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device=
|
| 39 |
super().__init__()
|
| 40 |
self.device = device
|
| 41 |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
|
@@ -52,7 +54,7 @@ class TransformerEmbedder(AbstractEncoder):
|
|
| 52 |
|
| 53 |
class BERTTokenizer(AbstractEncoder):
|
| 54 |
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
| 55 |
-
def __init__(self, device=
|
| 56 |
super().__init__()
|
| 57 |
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
| 58 |
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
|
@@ -80,7 +82,7 @@ class BERTTokenizer(AbstractEncoder):
|
|
| 80 |
class BERTEmbedder(AbstractEncoder):
|
| 81 |
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
| 82 |
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
| 83 |
-
device=
|
| 84 |
super().__init__()
|
| 85 |
self.use_tknz_fn = use_tokenizer
|
| 86 |
if self.use_tknz_fn:
|
|
@@ -136,7 +138,7 @@ class SpatialRescaler(nn.Module):
|
|
| 136 |
|
| 137 |
class FrozenCLIPEmbedder(AbstractEncoder):
|
| 138 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 139 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device=
|
| 140 |
super().__init__()
|
| 141 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
| 142 |
self.transformer = CLIPTextModel.from_pretrained(version)
|
|
@@ -163,7 +165,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
|
| 163 |
|
| 164 |
class FrozenCLIPEmbedderBoth(AbstractEncoder):
|
| 165 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 166 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device=
|
| 167 |
super().__init__()
|
| 168 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
| 169 |
self.text_transformer = CLIPTextModel.from_pretrained(version)
|
|
@@ -217,7 +219,7 @@ class FrozenCLIPEmbedderBoth(AbstractEncoder):
|
|
| 217 |
|
| 218 |
class CLIPEmbedderWithLearnableTokens(AbstractEncoder):
|
| 219 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 220 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device=
|
| 221 |
super().__init__()
|
| 222 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
| 223 |
self.transformer = CLIPTextModel.from_pretrained(version)
|
|
@@ -253,7 +255,7 @@ class FrozenCLIPTextEmbedder(nn.Module):
|
|
| 253 |
"""
|
| 254 |
Uses the CLIP transformer encoder for text.
|
| 255 |
"""
|
| 256 |
-
def __init__(self, version='ViT-L/14', device=
|
| 257 |
super().__init__()
|
| 258 |
self.model, _ = clip.load(version, jit=False, device="cpu")
|
| 259 |
self.device = device
|
|
@@ -289,7 +291,7 @@ class FrozenClipImageEmbedder(nn.Module):
|
|
| 289 |
self,
|
| 290 |
model,
|
| 291 |
jit=False,
|
| 292 |
-
device=
|
| 293 |
antialias=False,
|
| 294 |
):
|
| 295 |
super().__init__()
|
|
@@ -319,4 +321,4 @@ if __name__ == "__main__":
|
|
| 319 |
from ldm.util import count_params
|
| 320 |
model = FrozenCLIPEmbedderBoth()
|
| 321 |
breakpoint()
|
| 322 |
-
count_params(model, verbose=True)
|
|
|
|
| 5 |
from einops import rearrange, repeat
|
| 6 |
from transformers import CLIPTokenizer, CLIPTextModel, CLIPVisionModel, CLIPModel
|
| 7 |
import kornia
|
| 8 |
+
import devicetorch
|
| 9 |
|
| 10 |
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
| 11 |
|
| 12 |
+
DEVICE = devicetorch.get(torch)
|
| 13 |
|
| 14 |
class AbstractEncoder(nn.Module):
|
| 15 |
def __init__(self):
|
|
|
|
| 37 |
|
| 38 |
class TransformerEmbedder(AbstractEncoder):
|
| 39 |
"""Some transformer encoder layers"""
|
| 40 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device=DEVICE):
|
| 41 |
super().__init__()
|
| 42 |
self.device = device
|
| 43 |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
|
|
|
| 54 |
|
| 55 |
class BERTTokenizer(AbstractEncoder):
|
| 56 |
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
| 57 |
+
def __init__(self, device=DEVICE, vq_interface=True, max_length=77):
|
| 58 |
super().__init__()
|
| 59 |
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
| 60 |
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
|
|
|
| 82 |
class BERTEmbedder(AbstractEncoder):
|
| 83 |
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
| 84 |
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
| 85 |
+
device=DEVICE,use_tokenizer=True, embedding_dropout=0.0):
|
| 86 |
super().__init__()
|
| 87 |
self.use_tknz_fn = use_tokenizer
|
| 88 |
if self.use_tknz_fn:
|
|
|
|
| 138 |
|
| 139 |
class FrozenCLIPEmbedder(AbstractEncoder):
|
| 140 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 141 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device=DEVICE, max_length=77):
|
| 142 |
super().__init__()
|
| 143 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
| 144 |
self.transformer = CLIPTextModel.from_pretrained(version)
|
|
|
|
| 165 |
|
| 166 |
class FrozenCLIPEmbedderBoth(AbstractEncoder):
|
| 167 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 168 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device=DEVICE, max_length=77, antialias=False,):
|
| 169 |
super().__init__()
|
| 170 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
| 171 |
self.text_transformer = CLIPTextModel.from_pretrained(version)
|
|
|
|
| 219 |
|
| 220 |
class CLIPEmbedderWithLearnableTokens(AbstractEncoder):
|
| 221 |
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
| 222 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device=DEVICE, max_length=77, num_learnable_tokens=3):
|
| 223 |
super().__init__()
|
| 224 |
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
| 225 |
self.transformer = CLIPTextModel.from_pretrained(version)
|
|
|
|
| 255 |
"""
|
| 256 |
Uses the CLIP transformer encoder for text.
|
| 257 |
"""
|
| 258 |
+
def __init__(self, version='ViT-L/14', device=DEVICE, max_length=77, n_repeat=1, normalize=True):
|
| 259 |
super().__init__()
|
| 260 |
self.model, _ = clip.load(version, jit=False, device="cpu")
|
| 261 |
self.device = device
|
|
|
|
| 291 |
self,
|
| 292 |
model,
|
| 293 |
jit=False,
|
| 294 |
+
device=DEVICE,
|
| 295 |
antialias=False,
|
| 296 |
):
|
| 297 |
super().__init__()
|
|
|
|
| 321 |
from ldm.util import count_params
|
| 322 |
model = FrozenCLIPEmbedderBoth()
|
| 323 |
breakpoint()
|
| 324 |
+
count_params(model, verbose=True)
|