|
|
from typing import List, Union |
|
|
|
|
|
import datasets as ds |
|
|
import evaluate |
|
|
import numpy as np |
|
|
import numpy.typing as npt |
|
|
from evaluate.utils.file_utils import add_start_docstrings |
|
|
|
|
|
_DESCRIPTION = r"""\ |
|
|
Computes the ratio of valid elements to all elements in the layout, where the area within the canvas of a valid element must be greater than 0.1% of the canvas. |
|
|
""" |
|
|
|
|
|
_KWARGS_DESCRIPTION = """\ |
|
|
Args: |
|
|
predictions (`list` of `list` of `float`): A list of lists of floats representing normalized `ltrb`-format bounding boxes. |
|
|
gold_labels (`list` of `list` of `int`): A list of lists of integers representing class labels. |
|
|
canvas_width (`int`, *optional*): Width of the canvas in pixels. Can be provided at initialization or during computation. |
|
|
canvas_height (`int`, *optional*): Height of the canvas in pixels. Can be provided at initialization or during computation. |
|
|
|
|
|
Returns: |
|
|
float: The ratio of valid elements to all elements (0.0 to 1.0). An element is considered valid if its area within the canvas is greater than 0.1% of the canvas area. |
|
|
|
|
|
Examples: |
|
|
>>> import evaluate |
|
|
>>> import numpy as np |
|
|
>>> metric = evaluate.load("creative-graphic-design/layout-validity") |
|
|
>>> # Normalized bounding boxes (left, top, right, bottom) |
|
|
>>> predictions = [[[0.1, 0.1, 0.5, 0.5], [0.6, 0.6, 0.9, 0.9]]] |
|
|
>>> gold_labels = [[1, 2]] # Non-zero labels indicate valid elements |
|
|
>>> result = metric.compute(predictions=predictions, gold_labels=gold_labels, canvas_width=512, canvas_height=512) |
|
|
>>> print(result) |
|
|
1.0 |
|
|
""" |
|
|
|
|
|
_CITATION = """\ |
|
|
@inproceedings{hsu2023posterlayout, |
|
|
title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, |
|
|
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, |
|
|
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, |
|
|
pages={6018--6026}, |
|
|
year={2023} |
|
|
} |
|
|
""" |
|
|
|
|
|
|
|
|
@add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
|
class LayoutValidity(evaluate.Metric): |
|
|
def __init__( |
|
|
self, |
|
|
canvas_width: int | None = None, |
|
|
canvas_height: int | None = None, |
|
|
**kwargs, |
|
|
) -> None: |
|
|
super().__init__(**kwargs) |
|
|
self.canvas_width = canvas_width |
|
|
self.canvas_height = canvas_height |
|
|
|
|
|
def _info(self) -> evaluate.EvaluationModuleInfo: |
|
|
return evaluate.MetricInfo( |
|
|
description=_DESCRIPTION, |
|
|
citation=_CITATION, |
|
|
inputs_description=_KWARGS_DESCRIPTION, |
|
|
features=ds.Features( |
|
|
{ |
|
|
"predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), |
|
|
"gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), |
|
|
} |
|
|
), |
|
|
codebase_urls=[ |
|
|
"https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L105-L127" |
|
|
], |
|
|
) |
|
|
|
|
|
def _compute( |
|
|
self, |
|
|
*, |
|
|
predictions: Union[npt.NDArray[np.float64], List[List[float]]], |
|
|
gold_labels: Union[npt.NDArray[np.int64], List[int]], |
|
|
canvas_width: int | None = None, |
|
|
canvas_height: int | None = None, |
|
|
) -> float: |
|
|
|
|
|
canvas_width = canvas_width if canvas_width is not None else self.canvas_width |
|
|
canvas_height = ( |
|
|
canvas_height if canvas_height is not None else self.canvas_height |
|
|
) |
|
|
|
|
|
if canvas_width is None or canvas_height is None: |
|
|
raise ValueError( |
|
|
"canvas_width and canvas_height must be provided either " |
|
|
"at initialization or during computation" |
|
|
) |
|
|
|
|
|
predictions = np.array(predictions) |
|
|
gold_labels = np.array(gold_labels) |
|
|
|
|
|
predictions[:, :, ::2] *= canvas_width |
|
|
predictions[:, :, 1::2] *= canvas_height |
|
|
|
|
|
total_elements, empty_elements = 0, 0 |
|
|
|
|
|
w = canvas_width / 100 |
|
|
h = canvas_height / 100 |
|
|
|
|
|
assert len(predictions) == len(gold_labels) |
|
|
|
|
|
for gold_label, prediction in zip(gold_labels, predictions): |
|
|
mask = (gold_label > 0).reshape(-1) |
|
|
mask_prediction = prediction[mask] |
|
|
total_elements += len(mask_prediction) |
|
|
for mp in mask_prediction: |
|
|
xl, yl, xr, yr = mp |
|
|
xl = max(0, xl) |
|
|
yl = max(0, yl) |
|
|
xr = min(canvas_width, xr) |
|
|
yr = min(canvas_height, yr) |
|
|
|
|
|
if abs((xr - xl) * (yr - yl)) < w * h * 10: |
|
|
empty_elements += 1 |
|
|
|
|
|
return 1 - empty_elements / total_elements |
|
|
|