FlexBoard / utils.py
Grigori Fursin
first commit
4d2d78e unverified
import json
import logging
import polars as pl
logger = logging.getLogger(__name__)
FEATURES = {
"Performance": {
"metrics.result": "continuous",
"metrics.result_per_accelerator": "continuous",
"metrics.accuracy": "continuous",
},
"Model": {
"model.name": "categorical",
"model.mlperf_name": "categorical",
"model.architecture": "categorical",
"model.number_of_parameters": "continuous",
"model.weight_data_types": "categorical",
},
"Accelerator": {
"system.accelerator.vendor": "categorical",
"system.accelerator.name": "categorical",
"system.accelerator.count_per_node": "continuous",
"system.accelerator.total_count": "continuous",
"system.accelerator.memory_capacity": "continuous",
"system.accelerator.memory_config": "text",
"system.interconnect.accelerator": "categorical",
},
"CPU": {
"system.cpu.vendor": "categorical",
"system.cpu.model": "categorical",
"system.cpu.core_count": "continuous",
"system.cpu.count_per_node": "continuous",
"system.cpu.frequency": "continuous",
"system.cpu.caches": "text",
"system.cpu.vcpu_count": "continuous",
},
"System": {
"system.name": "text",
"system.type": "categorical",
"system.cooling": "categorical",
"system.number_of_nodes": "continuous",
"system.memory.capacity": "continuous",
"system.memory.configuration": "text",
"system.interconnect.accelerator_host": "categorical",
},
"Software": {
"software.framework": "categorical",
"software.version": "categorical",
"software.operating_system": "categorical",
},
"Submission": {
"submission.organization": "categorical",
"submission.division": "categorical",
"submission.scenario": "categorical",
"submission.availability": "boolean",
},
}
def get_features_by_type(feature_type: str) -> list[str]:
"""Get all features of a specific type."""
result = []
for group in FEATURES.values():
for feature, typ in group.items():
if typ == feature_type:
result.append(feature)
return result
FEATURE_TYPES = {
"continuous": get_features_by_type("continuous"),
"categorical": get_features_by_type("categorical"),
"boolean": get_features_by_type("boolean"),
"text": get_features_by_type("text"),
}
UI_FEATURE_GROUPS = {
group: list(features.keys()) for group, features in FEATURES.items()
}
def get_feature_type(feature_name: str) -> str:
"""Get the type of a feature from the FEATURES dictionary."""
for group in FEATURES.values():
if feature_name in group:
return group[feature_name]
return "categorical"
def load_data(file_path: str = "data.json") -> pl.DataFrame:
"""Load processed benchmark data."""
logger.info(f"Loading processed data from {file_path}")
try:
with open(file_path, "r") as f:
data = json.load(f)
for item in data:
for key, value in item.items():
if isinstance(value, str):
if value.isdigit():
item[key] = int(value)
elif value.replace(".", "", 1).isdigit():
item[key] = float(value)
df = pl.DataFrame(data, infer_schema_length=None)
logger.info(f"Loaded {len(df)} benchmark results")
return df
except Exception as e:
logger.error(f"Error loading data: {e}")
return pl.DataFrame()