Test-Prompt / backend /inference /inference_engine.py
abhiman181025's picture
First commit
1314bf5
import pandas as pd
import threading
import time
import os
from pathlib import Path
from typing import Dict, List, Tuple, Union, Any, Optional, Callable
import gradio as gr
from ..models.model_manager import ModelManager
from ..utils.data_processing import extract_file_dict, validate_data, extract_binary_output
from ..config.config_manager import ConfigManager
from ..utils.metrics import create_accuracy_table
from datetime import datetime
import boto3
class InferenceEngine:
"""Engine for handling batch inference and processing control."""
def __init__(self, model_manager: ModelManager, config_manager: ConfigManager):
"""
Initialize the inference engine.
Args:
model_manager: Model manager instance
config_manager: Configuration manager instance
"""
self.model_manager = model_manager
self.config_manager = config_manager
self.processing_lock = threading.Lock()
self.stop_processing = False
self.full_df = None # Store full dataframe with image paths
def set_stop_flag(self) -> str:
"""Set the global stop flag to interrupt processing."""
with self.processing_lock:
self.stop_processing = True
print("πŸ›‘ Stop signal received. Processing will halt after current image...")
return "πŸ›‘ Stopping process... Please wait for current image to complete."
def reset_stop_flag(self) -> None:
"""Reset the global stop flag before starting new processing."""
with self.processing_lock:
self.stop_processing = False
def check_stop_flag(self) -> bool:
"""Check if processing should be stopped."""
with self.processing_lock:
return self.stop_processing
def _should_load_model(self, model_selection: str, quantization_type: str) -> bool:
"""
Check if we need to load the model.
Args:
model_selection: Selected model name
quantization_type: Selected quantization type
Returns:
True if model needs to be loaded, False otherwise
"""
# If no model is loaded, we need to load
if not self.model_manager.current_model or not self.model_manager.current_model.is_model_loaded():
return True
# If different model is selected, we need to load
if self.model_manager.current_model_name != model_selection:
return True
# If same model but different quantization, we need to reload
if self.model_manager.current_model.current_quantization != quantization_type:
return True
return False
def _ensure_correct_model_loaded(self, model_selection: str, quantization_type: str, progress: gr.Progress()) -> None:
"""
Ensure the correct model with correct quantization is loaded.
Args:
model_selection: Selected model name
quantization_type: Selected quantization type
progress: Gradio progress object
"""
if self._should_load_model(model_selection, quantization_type):
progress(0, desc=f"πŸš€ Loading {model_selection} ({quantization_type})...")
print(f"πŸš€ Loading {model_selection} with {quantization_type}...")
success = self.model_manager.load_model(model_selection, quantization_type)
if not success:
raise Exception(f"Failed to load model {model_selection} with {quantization_type}")
else:
print(f"βœ… Correct model already loaded: {model_selection} with {quantization_type}")
def process_folder_input(
self,
folder_path: List[Path],
prompt: str,
quantization_type: str,
model_selection: str,
progress: gr.Progress()
) -> Tuple[Any, ...]:
"""
Process input folder with images and optional CSV.
Args:
folder_path: List of Path objects from Gradio
prompt: Text prompt for inference
quantization_type: Model quantization type
model_selection: Selected model name
progress: Gradio progress object
Returns:
Tuple of UI update states and results
"""
# Reset stop flag at the beginning of processing
self.reset_stop_flag()
# Extract file dictionary
file_dict = extract_file_dict(folder_path)
# Print all file names for debug
for fname in file_dict:
print(fname)
validation_result, message = validate_data(file_dict)
# Handle different validation results
if validation_result == False:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), message, gr.update(visible=False), ""
elif validation_result in ["no_csv", "multiple_csv"]:
return self._process_without_csv(file_dict, prompt, quantization_type, model_selection, progress)
else:
return self._process_with_csv(file_dict, prompt, quantization_type, model_selection, progress)
def _process_without_csv(
self,
file_dict: Dict[str, Path],
prompt: str,
quantization_type: str,
model_selection: str,
progress: gr.Progress()
) -> Tuple[Any, ...]:
"""Process images without CSV file."""
image_exts = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff']
image_file_dict = {fname: file_dict[fname] for fname in file_dict
if any(fname.lower().endswith(ext) for ext in image_exts)}
filtered_rows = []
total_images = len(image_file_dict)
if total_images == 0:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), "No image files found.", gr.update(visible=False), ""
# Ensure correct model is loaded
self._ensure_correct_model_loaded(model_selection, quantization_type, progress)
# Initialize progress
progress(0, desc=f"πŸš€ Starting to process {total_images} images...")
print(f"Starting to process {total_images} images with {model_selection}...")
for idx, (img_name, img_path) in enumerate(image_file_dict.items()):
# Check stop flag before processing each image
if self.check_stop_flag():
print(f"πŸ›‘ Processing stopped by user at image {idx + 1}/{total_images}")
# Add remaining images as "Not processed" entries
for remaining_idx, (remaining_name, remaining_path) in enumerate(list(image_file_dict.items())[idx:]):
filtered_rows.append({
'S.No': idx + remaining_idx + 1,
'Image Name': remaining_name,
'Ground Truth': '',
'Binary Output': 'Not processed (stopped)',
'Model Output': 'Processing stopped by user',
'Image Path': str(remaining_path)
})
display_df = pd.DataFrame(filtered_rows)[['S.No', 'Image Name', 'Ground Truth', 'Binary Output', 'Model Output']]
self.full_df = pd.DataFrame(filtered_rows)
final_message = f"πŸ›‘ Processing stopped by user. Completed {idx}/{total_images} images."
print(final_message)
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), display_df, gr.update(visible=False), final_message
try:
# Update progress with current image info
current_progress = idx / total_images
progress_msg = f"πŸ”„ Processing image {idx + 1}/{total_images}: {img_name[:30]}..." if len(img_name) > 30 else f"πŸ”„ Processing image {idx + 1}/{total_images}: {img_name}"
progress(current_progress, desc=progress_msg)
print(progress_msg)
# Use model inference
model_output = self.model_manager.inference(str(img_path), prompt) if prompt else "No prompt provided"
# Extract binary output (no ground truth available for file-based processing)
binary_output = extract_binary_output(model_output, "", [])
filtered_rows.append({
'S.No': idx + 1,
'Image Name': img_name,
'Ground Truth': '', # Empty for manual input
'Binary Output': binary_output,
'Model Output': model_output,
'Image Path': str(img_path)
})
# Update progress after successful processing
current_progress = (idx + 1) / total_images
progress_msg = f"βœ… Completed {idx + 1}/{total_images} images"
progress(current_progress, desc=progress_msg)
print(f"Successfully processed image {idx + 1} of {total_images}")
except Exception as e:
print(f"Error processing image {idx + 1} of {total_images}: {str(e)}")
filtered_rows.append({
'S.No': idx + 1,
'Image Name': img_name,
'Ground Truth': '',
'Binary Output': 'Enter the output manually', # Default for errors
'Model Output': f"Error: {str(e)}",
'Image Path': str(img_path)
})
# Update progress even for errors
current_progress = (idx + 1) / total_images
progress_msg = f"⚠️ Processed {idx + 1}/{total_images} images (with errors)"
progress(current_progress, desc=progress_msg)
# Check if processing was completed or stopped
if self.check_stop_flag():
final_message = f"πŸ›‘ Processing stopped by user. Completed {len(filtered_rows)}/{total_images} images."
else:
final_message = f"πŸŽ‰ Successfully completed processing all {total_images} images!"
display_df = pd.DataFrame(filtered_rows)[['S.No', 'Image Name', 'Ground Truth', 'Binary Output', 'Model Output']]
# Save the full dataframe (with Image Path) for preview
self.full_df = pd.DataFrame(filtered_rows)
self.save_results_to_s3(display_df)
print(final_message)
# Make the table editable for ground truth input
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), display_df, gr.update(visible=False), final_message
def _process_with_csv(
self,
file_dict: Dict[str, Path],
prompt: str,
quantization_type: str,
model_selection: str,
progress: gr.Progress()
) -> Tuple[Any, ...]:
"""Process images with CSV file."""
csv_files = [fname for fname in file_dict if fname.lower().endswith('.csv')]
csv_file = file_dict[csv_files[0]]
df = pd.read_csv(csv_file)
# Collect all ground truth values for unique keyword extraction
all_ground_truths = [str(row['Ground Truth']) for idx, row in df.iterrows()
if pd.notna(row['Ground Truth']) and str(row['Ground Truth']).strip()]
# Find image files
image_exts = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff']
image_file_dict = {fname: file_dict[fname] for fname in file_dict
if any(fname.lower().endswith(ext) for ext in image_exts)}
# Only keep rows where image file exists
filtered_rows = []
matching_images = [row for idx, row in df.iterrows() if row['Image Name'] in image_file_dict]
total_images = len(matching_images)
if total_images == 0:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), "No matching images found for entries in CSV.", gr.update(visible=False), ""
# Ensure correct model is loaded
self._ensure_correct_model_loaded(model_selection, quantization_type, progress)
# Initialize progress
progress(0, desc=f"πŸš€ Starting to process {total_images} images...")
print(f"Starting to process {total_images} images with {model_selection}...")
processed_count = 0
for idx, row in df.iterrows():
img_name = row['Image Name']
if img_name in image_file_dict:
# Check stop flag before processing each image
if self.check_stop_flag():
print(f"πŸ›‘ Processing stopped by user at image {processed_count + 1}/{total_images}")
# Add remaining unprocessed images
for remaining_idx, remaining_row in df.iloc[idx:].iterrows():
if remaining_row['Image Name'] in image_file_dict:
filtered_rows.append({
'S.No': len(filtered_rows) + 1,
'Image Name': remaining_row['Image Name'],
'Ground Truth': remaining_row['Ground Truth'],
'Binary Output': 'Not processed (stopped)',
'Model Output': 'Processing stopped by user',
'Image Path': str(image_file_dict[remaining_row['Image Name']])
})
display_df = pd.DataFrame(filtered_rows)[['S.No', 'Image Name', 'Ground Truth', 'Binary Output', 'Model Output']]
self.full_df = pd.DataFrame(filtered_rows)
final_message = f"πŸ›‘ Processing stopped by user. Completed {processed_count}/{total_images} images."
print(final_message)
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), display_df, gr.update(visible=False), final_message
try:
processed_count += 1
# Update progress with current image info
current_progress = (processed_count - 1) / total_images
progress_msg = f"πŸ”„ Processing image {processed_count}/{total_images}: {img_name[:30]}..." if len(img_name) > 30 else f"πŸ”„ Processing image {processed_count}/{total_images}: {img_name}"
progress(current_progress, desc=progress_msg)
print(progress_msg)
# Use model inference
model_output = self.model_manager.inference(str(image_file_dict[img_name]), prompt)
# Extract binary output using ground truth and all ground truths for keyword extraction
ground_truth = str(row['Ground Truth']) if pd.notna(row['Ground Truth']) else ""
binary_output = extract_binary_output(model_output, ground_truth, all_ground_truths)
filtered_rows.append({
'S.No': len(filtered_rows) + 1,
'Image Name': img_name,
'Ground Truth': row['Ground Truth'],
'Binary Output': binary_output,
'Model Output': model_output,
'Image Path': str(image_file_dict[img_name])
})
# Update progress after successful processing
current_progress = processed_count / total_images
progress_msg = f"βœ… Completed {processed_count}/{total_images} images"
progress(current_progress, desc=progress_msg)
print(f"Successfully processed image {processed_count} of {total_images}")
except Exception as e:
print(f"Error processing image {processed_count} of {total_images}: {str(e)}")
filtered_rows.append({
'S.No': len(filtered_rows) + 1,
'Image Name': img_name,
'Ground Truth': row['Ground Truth'],
'Binary Output': 'Enter the output manually', # Default for errors
'Model Output': f"Error: {str(e)}",
'Image Path': str(image_file_dict[img_name])
})
# Update progress even for errors
current_progress = processed_count / total_images
progress_msg = f"⚠️ Processed {processed_count}/{total_images} images (with errors)"
progress(current_progress, desc=progress_msg)
# Check if processing was completed or stopped
if self.check_stop_flag():
final_message = f"πŸ›‘ Processing stopped by user. Completed {len([r for r in filtered_rows if 'stopped' not in r['Model Output']])}/{total_images} images."
else:
final_message = f"πŸŽ‰ Successfully completed processing all {total_images} images!"
display_df = pd.DataFrame(filtered_rows)[['S.No', 'Image Name', 'Ground Truth', 'Binary Output', 'Model Output']]
# Save the full dataframe (with Image Path) for preview
self.full_df = pd.DataFrame(filtered_rows)
self.save_results_to_s3(display_df)
print(final_message)
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), display_df, gr.update(visible=False), final_message
def rerun_with_new_prompt(
self,
df: pd.DataFrame,
new_prompt: str,
quantization_type: str,
model_selection: str,
progress: gr.Progress()
) -> Tuple[Any, ...]:
"""Rerun processing with new prompt and clear accuracy data."""
if df is None or not new_prompt.strip():
return df, None, None, None, gr.update(visible=False), gr.update(visible=False), "⚠️ Please provide a valid prompt"
# Reset stop flag at the beginning of reprocessing
self.reset_stop_flag()
updated_df = df.copy()
total_images = len(updated_df)
# Collect all ground truth values for unique keyword extraction
all_ground_truths = [str(row['Ground Truth']) for idx, row in updated_df.iterrows()
if pd.notna(row['Ground Truth']) and str(row['Ground Truth']).strip()]
# Get the full dataframe with image paths
if self.full_df is None:
return df, None, None, None, gr.update(visible=False), gr.update(visible=False), "⚠️ No image data available"
# Create a copy of the full dataframe to update
updated_full_df = self.full_df.copy()
# Ensure correct model is loaded
self._ensure_correct_model_loaded(model_selection, quantization_type, progress)
# Initialize progress
progress(0, desc=f"πŸš€ Starting to reprocess {total_images} images with new prompt...")
print(f"πŸš€ Starting to reprocess {total_images} images with new prompt...")
for i in range(len(updated_df)):
# Check stop flag before processing each image
if self.check_stop_flag():
print(f"πŸ›‘ Reprocessing stopped by user at image {i + 1}/{total_images}")
# Mark remaining images as not reprocessed in both dataframes
for j in range(i, len(updated_df)):
updated_df.iloc[j, updated_df.columns.get_loc("Model Output")] = "Reprocessing stopped by user"
updated_df.iloc[j, updated_df.columns.get_loc("Binary Output")] = "Not reprocessed (stopped)"
# Also update the full dataframe
if j < len(updated_full_df):
updated_full_df.iloc[j, updated_full_df.columns.get_loc("Model Output")] = "Reprocessing stopped by user"
updated_full_df.iloc[j, updated_full_df.columns.get_loc("Binary Output")] = "Not reprocessed (stopped)"
# Update the full_df reference
self.full_df = updated_full_df
final_message = f"πŸ›‘ Reprocessing stopped by user. Completed {i}/{total_images} images."
print(final_message)
return updated_df, None, None, None, gr.update(visible=False), gr.update(visible=False), final_message
try:
# Get image path from full_df
image_path = self.full_df.iloc[i]['Image Path']
image_name = updated_df.iloc[i]['Image Name']
ground_truth = str(updated_df.iloc[i]['Ground Truth']) if pd.notna(updated_df.iloc[i]['Ground Truth']) else ""
# Update progress with current image info
current_progress = i / total_images
progress_msg = f"πŸ”„ Reprocessing image {i + 1}/{total_images}: {image_name[:30]}..." if len(image_name) > 30 else f"πŸ”„ Reprocessing image {i + 1}/{total_images}: {image_name}"
progress(current_progress, desc=progress_msg)
print(progress_msg)
# Use model inference with new prompt
model_output = self.model_manager.inference(image_path, new_prompt)
# Update both the display dataframe and the full dataframe
updated_df.iloc[i, updated_df.columns.get_loc("Model Output")] = model_output
updated_full_df.iloc[i, updated_full_df.columns.get_loc("Model Output")] = model_output
# Extract binary output using ground truth and all ground truths for keyword extraction
binary_output = extract_binary_output(model_output, ground_truth, all_ground_truths)
updated_df.iloc[i, updated_df.columns.get_loc("Binary Output")] = binary_output
updated_full_df.iloc[i, updated_full_df.columns.get_loc("Binary Output")] = binary_output
# Update progress after successful processing
current_progress = (i + 1) / total_images
progress_msg = f"βœ… Completed {i + 1}/{total_images} images"
progress(current_progress, desc=progress_msg)
print(f"βœ… Successfully reprocessed image {i + 1}/{total_images}")
except Exception as e:
print(f"❌ Error reprocessing image {i + 1}/{total_images}: {str(e)}")
error_message = f"Error: {str(e)}"
# Update both dataframes with error information
updated_df.iloc[i, updated_df.columns.get_loc("Model Output")] = error_message
updated_df.iloc[i, updated_df.columns.get_loc("Binary Output")] = "Enter the output manually"
updated_full_df.iloc[i, updated_full_df.columns.get_loc("Model Output")] = error_message
updated_full_df.iloc[i, updated_full_df.columns.get_loc("Binary Output")] = "Enter the output manually"
# Update progress even for errors
current_progress = (i + 1) / total_images
progress_msg = f"⚠️ Processed {i + 1}/{total_images} images (with errors)"
progress(current_progress, desc=progress_msg)
# Update the full_df reference with the updated data
self.full_df = updated_full_df
# Check if reprocessing was completed or stopped
if self.check_stop_flag():
final_message = f"πŸ›‘ Reprocessing stopped by user. Completed reprocessing for some images."
else:
final_message = f"πŸŽ‰ Successfully completed reprocessing all {total_images} images with new prompt! Click 'Generate Metrics' to see accuracy data."
self.save_results_to_s3(updated_full_df)
print(final_message)
# Return updated dataframe and clear accuracy data (hide section 3)
return updated_df, None, None, None, gr.update(visible=False), gr.update(visible=False), final_message
def save_results_to_s3(self, df):
"""Save results to S3 bucket."""
try:
s3_bucket = os.getenv('AWS_BUCKET')
prefix = os.getenv('AWS_PREFIX')
s3_path = f"{prefix}/{datetime.now().date()}"
date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
csv_file_name = f'{date_time}_model_output.csv'
# create accuracy table
metrics_df, _, cm_values = create_accuracy_table(df)
# save metrics_df to text file
text_file_name = f'{date_time}_evaluation_metrics.txt'
# save metrics_df to text file
with open(text_file_name, 'w') as f:
f.write(metrics_df.to_string() + '\n\n')
f.write(cm_values.to_string())
# save df to csv
df.to_csv(csv_file_name, index=False)
# upload files to s3
status = self.upload_file(text_file_name, s3_bucket, f"{s3_path}/{text_file_name}")
print(f"Status of uploading {text_file_name} to {s3_bucket}/{s3_path}/{text_file_name}: {status}")
status = self.upload_file(csv_file_name, s3_bucket, f"{s3_path}/{csv_file_name}")
print(f"Status of uploading {csv_file_name} to {s3_bucket}/{s3_path}/{csv_file_name}: {status}")
# delete files from local
os.remove(text_file_name)
os.remove(csv_file_name)
print(f"Deleted {text_file_name} and {csv_file_name}")
except Exception as e:
print(f"Error saving results to s3: {e}")
if "No valid data" in str(e) or "Need at least 2 different" in str(e):
df.to_csv(csv_file_name, index=False)
status = self.upload_file(csv_file_name, s3_bucket, f"{s3_path}/{csv_file_name}")
print(f"Status of uploading only csv file to {s3_bucket}/{s3_path}/{csv_file_name}: {status}")
os.remove(csv_file_name)
print(f"Deleted {csv_file_name}")
def upload_file(self,file_name, bucket, object_name=None):
"""Upload a file to an S3 bucket
:param file_name: File to upload
:param bucket: Bucket to upload to
:param object_name: S3 object name. If not specified then file_name is used
:return: True if file was uploaded, else False
"""
access_key = os.getenv('AWS_ACCESS_KEY_ID')
secret_key = os.getenv('AWS_SECRET_ACCESS_KEY')
# If S3 object_name was not specified, use file_name
if object_name is None:
object_name = os.path.basename(file_name)
# Upload the file
s3_client = boto3.client('s3', aws_access_key_id=access_key, aws_secret_access_key=secret_key)
try:
response = s3_client.upload_file(file_name, bucket, object_name)
except Exception as e:
print(f"Error uploading {file_name} to s3: {e}")
return False
return True