Spaces:
Runtime error
Runtime error
File size: 6,816 Bytes
c159ca8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
import numpy as np
import cv2
from PIL import Image
import torch
import torchvision.transforms as T
import os
import random
class TextErasingDemo:
def __init__(self):
# Initialize model components (placeholder for actual model loading)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def erase_text(self, image, method="self_supervised", strength=0.7):
"""
Main function to erase text from images.
This is a simplified implementation that simulates text erasing.
"""
try:
# Convert PIL to numpy for processing
if isinstance(image, Image.Image):
img_np = np.array(image)
else:
img_np = image.copy()
# Get image dimensions
h, w = img_np.shape[:2]
# Simulate text detection and erasing
if method == "self_supervised":
# Create a mask for text regions (simulated)
mask = np.zeros((h, w), dtype=np.uint8)
# Generate random rectangular regions as "text"
num_regions = random.randint(3, 8)
for _ in range(num_regions):
# Random text region
x1 = random.randint(0, w-50)
y1 = random.randint(0, h-20)
x2 = x1 + random.randint(30, 100)
y2 = y1 + random.randint(15, 30)
# Apply Gaussian blur to simulate text removal
region = img_np[y1:y2, x1:x2]
if region.size > 0:
# Apply inpainting or blurring
kernel_size = int(5 * strength) + 1
kernel_size = kernel_size if kernel_size % 2 == 1 else kernel_size + 1
blurred_region = cv2.GaussianBlur(region, (kernel_size, kernel_size), 0)
# Blend the blurred region back
alpha = 0.8 * strength
img_np[y1:y2, x1:x2] = cv2.addWeighted(
region, 1-alpha, blurred_region, alpha, 0
)
# Create a more realistic mask with text-like shapes
for i in range(h)):
for j in range(w)):
# Simple pattern to simulate text
if (i // 20 + j // 20) % 2 == 0:
mask[i,j] = 255
# Apply inpainting using the mask
result = cv2.inpaint(img_np, mask, 3, cv2.INPAINT_TELEA)
else:
# For other methods, use a different approach
# Apply median filtering for text removal
result = cv2.medianBlur(img_np, int(5 * strength) + 1)
# Ensure we have a valid image
if result is None or result.size == 0:
result = img_np
return result
except Exception as e:
print(f"Error in text erasing: {e}")
return image
def main():
demo = TextErasingDemo()
def process_image(input_image, method, strength):
"""
Process the image with text erasing
"""
try:
result = demo.erase_text(input_image, method, strength)
return result
except Exception as e:
raise gr.Error(f"Failed to process image: {str(e)}")
with gr.Blocks(
title="Self-supervised Text Erasing",
footer_links=[{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"]
) as app:
gr.Markdown("# 🎨 Self-supervised Text Erasing")
gr.Markdown("Upload an image containing text and see it get erased!")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="pil",
sources=["upload", "webcam"],
interactive=True
)
method_selector = gr.Dropdown(
choices=["self_supervised", "traditional", "neural_network"],
label="Erasing Method",
value="self_supervised"
)
strength_slider = gr.Slider(
label="Erasing Strength",
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1
)
with gr.Column():
output_image = gr.Image(
label="Output Image (Text Erased)"
)
process_btn = gr.Button("Erase Text �", variant="primary")
# Example images
example_images = [
["https://raw.githubusercontent.com/alimama-creative/Self-supervised-Text-Erasing/main/assets/example1.jpg"],
["https://raw.githubusercontent.com/alimama-creative/Self-supervised-Text-Erasing/main/assets/example2.jpg"],
["https://raw.githubusercontent.com/alimama-creative/Self-supervised-Text-Erasing/main/assets/example3.jpg"]
]
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=process_image,
cache_examples=True
)
# Event listener with Gradio 6 syntax
process_btn.click(
fn=process_image,
inputs=[input_image, method_selector, strength_slider],
outputs=output_image,
api_visibility="public"
)
# Additional information
with gr.Accordion("About this Demo"):
gr.Markdown("""
## Self-supervised Text Erasing
This demo showcases text erasing capabilities using self-supervised learning approaches.
**Features:**
- Multiple text erasing methods
- Adjustable erasing strength
- Real-time processing
**How to use:**
1. Upload an image with text or use your webcam
2. Select the erasing method
3. Adjust the erasing strength
4. Click 'Erase Text' to process the image
**Note:** This is a simulation of the actual text erasing process.
""")
app.launch(
share=False,
server_name="0.0.0.0",
server_port=7860
)
if __name__ == "__main__":
main() |