Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| from PIL import Image | |
| import traceback | |
| from typing import Optional | |
| model_id: str = "runwayml/stable-diffusion-v1-5" | |
| device: str = "cpu" # force CPU usage for compatibility | |
| image_generator_pipe: Optional[StableDiffusionPipeline] = None | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) | |
| image_generator_pipe = pipe.to(device) | |
| def generate_image_sd(prompt: str, negative_prompt: str, guidance_scale: float, num_inference_steps: int) -> Image.Image: | |
| with torch.no_grad(): | |
| output = image_generator_pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps | |
| ) | |
| image = output.images[0] if output.images else None | |
| if not image: | |
| raise RuntimeError("No image was returned from the generation pipeline.") | |
| return image | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| prompt = gr.Textbox(label="Prompt", placeholder="A beautiful futuristic city skyline at night") | |
| neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="blurry, distorted, watermark") | |
| guidance = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="Guidance Scale") | |
| steps = gr.Slider(10, 50, value=25, step=1, label="Inference Steps") | |
| generate_btn = gr.Button("Generate Image") | |
| with gr.Column(scale=1): | |
| output_image = gr.Image(label="Generated Image", type="pil") | |
| generate_btn.click( | |
| fn=generate_image_sd, | |
| inputs=[prompt, neg_prompt, guidance, steps], | |
| outputs=output_image | |
| ) | |
| if __name__ == "__main__": | |
| if not image_generator_pipe: | |
| print("WARNING: Image generator pipeline is not available. UI will launch, but generation will fail.") | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |