Spaces:
Running
Running
Update Space (evaluate main: c447fc8e)
Browse files- requirements.txt +1 -1
- roc_auc.py +11 -27
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
git+https://github.com/huggingface/evaluate@
|
| 2 |
sklearn
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/evaluate@c447fc8eda9c62af501bfdc6988919571050d950
|
| 2 |
sklearn
|
roc_auc.py
CHANGED
|
@@ -13,9 +13,6 @@
|
|
| 13 |
# limitations under the License.
|
| 14 |
"""Accuracy metric."""
|
| 15 |
|
| 16 |
-
from dataclasses import dataclass
|
| 17 |
-
from typing import List, Optional, Union
|
| 18 |
-
|
| 19 |
import datasets
|
| 20 |
from sklearn.metrics import roc_auc_score
|
| 21 |
|
|
@@ -145,31 +142,13 @@ year={2011}
|
|
| 145 |
"""
|
| 146 |
|
| 147 |
|
| 148 |
-
@dataclass
|
| 149 |
-
class ROCAUCConfig(evaluate.info.Config):
|
| 150 |
-
|
| 151 |
-
name: str = "default"
|
| 152 |
-
|
| 153 |
-
pos_label: Union[str, int] = 1
|
| 154 |
-
average: str = "macro"
|
| 155 |
-
labels: Optional[List[str]] = None
|
| 156 |
-
sample_weight: Optional[List[float]] = None
|
| 157 |
-
max_fpr: Optional[float] = None
|
| 158 |
-
multi_class: str = "raise"
|
| 159 |
-
|
| 160 |
-
|
| 161 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 162 |
class ROCAUC(evaluate.Metric):
|
| 163 |
-
|
| 164 |
-
CONFIG_CLASS = ROCAUCConfig
|
| 165 |
-
ALLOWED_CONFIG_NAMES = ["default", "multilabel", "multiclass"]
|
| 166 |
-
|
| 167 |
-
def _info(self, config):
|
| 168 |
return evaluate.MetricInfo(
|
| 169 |
description=_DESCRIPTION,
|
| 170 |
citation=_CITATION,
|
| 171 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 172 |
-
config=config,
|
| 173 |
features=datasets.Features(
|
| 174 |
{
|
| 175 |
"prediction_scores": datasets.Sequence(datasets.Value("float")),
|
|
@@ -193,15 +172,20 @@ class ROCAUC(evaluate.Metric):
|
|
| 193 |
self,
|
| 194 |
references,
|
| 195 |
prediction_scores,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
):
|
| 197 |
return {
|
| 198 |
"roc_auc": roc_auc_score(
|
| 199 |
references,
|
| 200 |
prediction_scores,
|
| 201 |
-
average=
|
| 202 |
-
sample_weight=
|
| 203 |
-
max_fpr=
|
| 204 |
-
multi_class=
|
| 205 |
-
labels=
|
| 206 |
)
|
| 207 |
}
|
|
|
|
| 13 |
# limitations under the License.
|
| 14 |
"""Accuracy metric."""
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
import datasets
|
| 17 |
from sklearn.metrics import roc_auc_score
|
| 18 |
|
|
|
|
| 142 |
"""
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 146 |
class ROCAUC(evaluate.Metric):
|
| 147 |
+
def _info(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
return evaluate.MetricInfo(
|
| 149 |
description=_DESCRIPTION,
|
| 150 |
citation=_CITATION,
|
| 151 |
inputs_description=_KWARGS_DESCRIPTION,
|
|
|
|
| 152 |
features=datasets.Features(
|
| 153 |
{
|
| 154 |
"prediction_scores": datasets.Sequence(datasets.Value("float")),
|
|
|
|
| 172 |
self,
|
| 173 |
references,
|
| 174 |
prediction_scores,
|
| 175 |
+
average="macro",
|
| 176 |
+
sample_weight=None,
|
| 177 |
+
max_fpr=None,
|
| 178 |
+
multi_class="raise",
|
| 179 |
+
labels=None,
|
| 180 |
):
|
| 181 |
return {
|
| 182 |
"roc_auc": roc_auc_score(
|
| 183 |
references,
|
| 184 |
prediction_scores,
|
| 185 |
+
average=average,
|
| 186 |
+
sample_weight=sample_weight,
|
| 187 |
+
max_fpr=max_fpr,
|
| 188 |
+
multi_class=multi_class,
|
| 189 |
+
labels=labels,
|
| 190 |
)
|
| 191 |
}
|