Create data_utils.py
Browse files- data_utils.py +319 -0
data_utils.py
ADDED
|
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import re
|
| 4 |
+
import six
|
| 5 |
+
import unicodedata
|
| 6 |
+
import torch
|
| 7 |
+
import rouge
|
| 8 |
+
import numpy as np
|
| 9 |
+
import random
|
| 10 |
+
# from fengshen.examples.pegasus.pegasus_utils import text_segmentate
|
| 11 |
+
import sys
|
| 12 |
+
|
| 13 |
+
sys.path.append('../../../')
|
| 14 |
+
|
| 15 |
+
rouge = rouge.Rouge()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
is_py2 = six.PY2
|
| 19 |
+
|
| 20 |
+
if not is_py2:
|
| 21 |
+
basestring = str
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def _is_chinese_char(cp):
|
| 25 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
| 26 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
| 27 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
| 28 |
+
#
|
| 29 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
| 30 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
| 31 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
| 32 |
+
# space-separated words, so they are not treated specially and handled
|
| 33 |
+
# like the all of the other languages.
|
| 34 |
+
if ((cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF)
|
| 35 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF)
|
| 36 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F)
|
| 37 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F)
|
| 38 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF)
|
| 39 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
| 40 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F)):
|
| 41 |
+
return True
|
| 42 |
+
|
| 43 |
+
return False
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def _is_whitespace(char):
|
| 47 |
+
"""Checks whether `char` is a whitespace character."""
|
| 48 |
+
# \t, \n, and \r are technically control characters but we treat them
|
| 49 |
+
# as whitespace since they are generally considered as such.
|
| 50 |
+
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
| 51 |
+
return True
|
| 52 |
+
cat = unicodedata.category(char)
|
| 53 |
+
if cat == "Zs":
|
| 54 |
+
return True
|
| 55 |
+
return False
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _is_control(char):
|
| 59 |
+
"""Checks whether `char` is a control character."""
|
| 60 |
+
# These are technically control characters but we count them as whitespace
|
| 61 |
+
# characters.
|
| 62 |
+
if char == "\t" or char == "\n" or char == "\r":
|
| 63 |
+
return False
|
| 64 |
+
cat = unicodedata.category(char)
|
| 65 |
+
if cat.startswith("C"):
|
| 66 |
+
return True
|
| 67 |
+
return False
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def _is_punctuation(char):
|
| 71 |
+
"""Checks whether `char` is a punctuation character."""
|
| 72 |
+
cp = ord(char)
|
| 73 |
+
# We treat all non-letter/number ASCII as punctuation.
|
| 74 |
+
# Characters such as "^", "$", and "`" are not in the Unicode
|
| 75 |
+
# Punctuation class but we treat them as punctuation anyways, for
|
| 76 |
+
# consistency.
|
| 77 |
+
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (
|
| 78 |
+
cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
|
| 79 |
+
return True
|
| 80 |
+
cat = unicodedata.category(char)
|
| 81 |
+
if cat.startswith("P"):
|
| 82 |
+
return True
|
| 83 |
+
return False
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def is_string(s):
|
| 87 |
+
"""判断是否是字符串
|
| 88 |
+
"""
|
| 89 |
+
return isinstance(s, basestring)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def is_stopwords(word, stopwords):
|
| 93 |
+
if word in stopwords:
|
| 94 |
+
return True
|
| 95 |
+
else:
|
| 96 |
+
return False
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def text_segmentate(text):
|
| 100 |
+
en_seg_pattern = '((?:\\!|\\?|\\.|\\n)+(?:\\s)+)'
|
| 101 |
+
ch_seg_pattern = '((?:?|!|。|\\n)+)'
|
| 102 |
+
try:
|
| 103 |
+
text = re.sub(en_seg_pattern, r'\1[SEP]', text)
|
| 104 |
+
# print("sub text: ", text)
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print("input: ", text)
|
| 107 |
+
raise e
|
| 108 |
+
text = re.sub(ch_seg_pattern, r'\1[SEP]', text)
|
| 109 |
+
# print("sub ch text: ", text)
|
| 110 |
+
text_list = text.split("[SEP]")
|
| 111 |
+
text_list = list(filter(lambda x: len(x) != 0, text_list))
|
| 112 |
+
return text_list
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def load_stopwords(stopwords_path):
|
| 116 |
+
stopwords_dict = {}
|
| 117 |
+
with open(stopwords_path, "r") as rf:
|
| 118 |
+
for line in rf:
|
| 119 |
+
line = line.strip()
|
| 120 |
+
if line not in stopwords_dict:
|
| 121 |
+
stopwords_dict[line] = 0
|
| 122 |
+
else:
|
| 123 |
+
pass
|
| 124 |
+
return stopwords_dict
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def text_process(text, max_length):
|
| 128 |
+
"""分割文本
|
| 129 |
+
"""
|
| 130 |
+
texts = text_segmentate(text)
|
| 131 |
+
|
| 132 |
+
result, length = [], 0
|
| 133 |
+
for text in texts:
|
| 134 |
+
if length + len(text) > max_length * 1.3 and len(result) >= 3:
|
| 135 |
+
yield result
|
| 136 |
+
result, length = [], 0
|
| 137 |
+
result.append(text)
|
| 138 |
+
length += len(text)
|
| 139 |
+
if result and len(result) >= 3:
|
| 140 |
+
yield result
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def text_process_split_long_content(text, max_length):
|
| 144 |
+
"""分割长文本
|
| 145 |
+
"""
|
| 146 |
+
texts = text_segmentate(text)
|
| 147 |
+
|
| 148 |
+
result, sentence_num = "", 0
|
| 149 |
+
for text in texts:
|
| 150 |
+
if len(text) > 500:
|
| 151 |
+
if len(result) > 300 and sentence_num >= 3:
|
| 152 |
+
yield result
|
| 153 |
+
result, sentence_num = "", 0
|
| 154 |
+
else:
|
| 155 |
+
result, sentence_num = "", 0
|
| 156 |
+
continue
|
| 157 |
+
else:
|
| 158 |
+
if len(result) + len(text) > max_length * 1.1 and sentence_num >= 3:
|
| 159 |
+
yield result
|
| 160 |
+
result, sentence_num = "", 0
|
| 161 |
+
result += text
|
| 162 |
+
sentence_num += 1
|
| 163 |
+
|
| 164 |
+
if result and sentence_num >= 3:
|
| 165 |
+
yield result
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def gather_join(texts, idxs):
|
| 169 |
+
"""取出对应的text,然后拼接起来
|
| 170 |
+
"""
|
| 171 |
+
return ''.join([texts[i] for i in idxs])
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def gather_join_f1(texts_token, idsx):
|
| 175 |
+
join_texts = []
|
| 176 |
+
for id in idsx:
|
| 177 |
+
join_texts.extend(texts_token[id])
|
| 178 |
+
return join_texts
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def compute_rouge(source, target):
|
| 182 |
+
"""计算rouge-1、rouge-2、rouge-l
|
| 183 |
+
"""
|
| 184 |
+
source, target = ' '.join(source), ' '.join(target)
|
| 185 |
+
try:
|
| 186 |
+
scores = rouge.get_scores(hyps=source, refs=target)
|
| 187 |
+
return {
|
| 188 |
+
'rouge-1': scores[0]['rouge-1']['f'],
|
| 189 |
+
'rouge-2': scores[0]['rouge-2']['f'],
|
| 190 |
+
'rouge-l': scores[0]['rouge-l']['f'],
|
| 191 |
+
}
|
| 192 |
+
except ValueError:
|
| 193 |
+
return {
|
| 194 |
+
'rouge-1': 0.0,
|
| 195 |
+
'rouge-2': 0.0,
|
| 196 |
+
'rouge-l': 0.0,
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def remove_stopwords(texts, stopwords_dict):
|
| 201 |
+
for i, text in enumerate(texts):
|
| 202 |
+
texts[i] = list(filter(lambda x: x not in stopwords_dict, text))
|
| 203 |
+
return texts
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def pseudo_summary_f1(texts,
|
| 207 |
+
stopwords,
|
| 208 |
+
tokenizer,
|
| 209 |
+
max_length,
|
| 210 |
+
rouge_strategy="rouge-l"):
|
| 211 |
+
"""构建伪标签摘要数据集
|
| 212 |
+
"""
|
| 213 |
+
summary_rate = 0.25
|
| 214 |
+
max_length = max_length - 1
|
| 215 |
+
texts_tokens = []
|
| 216 |
+
sentece_idxs_vec = []
|
| 217 |
+
for text in texts:
|
| 218 |
+
if len(texts) == 0:
|
| 219 |
+
continue
|
| 220 |
+
try:
|
| 221 |
+
ids = tokenizer.encode(text.strip())[:-1]
|
| 222 |
+
except ValueError:
|
| 223 |
+
print("error, input : ", text)
|
| 224 |
+
raise ValueError
|
| 225 |
+
sentece_idxs_vec.append(ids)
|
| 226 |
+
tokens = [tokenizer._convert_id_to_token(token) for token in ids]
|
| 227 |
+
texts_tokens.append(tokens)
|
| 228 |
+
|
| 229 |
+
texts_tokens_rm = remove_stopwords(texts_tokens, stopwords)
|
| 230 |
+
source_idxs, target_idxs = list(range(len(texts))), []
|
| 231 |
+
|
| 232 |
+
assert len(texts_tokens) == len(texts)
|
| 233 |
+
# truncate_index = 0
|
| 234 |
+
while True:
|
| 235 |
+
sims = []
|
| 236 |
+
for i in source_idxs:
|
| 237 |
+
new_source_idxs = [j for j in source_idxs if j != i]
|
| 238 |
+
new_target_idxs = sorted(target_idxs + [i])
|
| 239 |
+
new_source = gather_join_f1(texts_tokens_rm, new_source_idxs)
|
| 240 |
+
new_target = gather_join_f1(texts_tokens_rm, new_target_idxs)
|
| 241 |
+
sim = compute_rouge(new_source, new_target)[rouge_strategy]
|
| 242 |
+
sims.append(sim)
|
| 243 |
+
new_idx = source_idxs[np.argmax(sims)]
|
| 244 |
+
del sims
|
| 245 |
+
source_idxs.remove(new_idx)
|
| 246 |
+
target_idxs = sorted(target_idxs + [new_idx])
|
| 247 |
+
source = gather_join(texts, source_idxs)
|
| 248 |
+
target = gather_join(texts, target_idxs)
|
| 249 |
+
try:
|
| 250 |
+
if (len(source_idxs) == 1
|
| 251 |
+
or 1.0 * len(target) / len(source) > summary_rate):
|
| 252 |
+
break
|
| 253 |
+
except ZeroDivisionError as e:
|
| 254 |
+
print(e.meesage)
|
| 255 |
+
print(texts)
|
| 256 |
+
print("source: ", source)
|
| 257 |
+
print("target: ", target)
|
| 258 |
+
|
| 259 |
+
if len(source) < len(target):
|
| 260 |
+
source, target = target, source
|
| 261 |
+
source_idxs, target_idxs = target_idxs, source_idxs
|
| 262 |
+
|
| 263 |
+
return sentece_idxs_vec, source, target, source_idxs, target_idxs
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def get_input_mask(sentence_id_vec, indexs):
|
| 267 |
+
target_idxs = []
|
| 268 |
+
input_idxs = []
|
| 269 |
+
kMaskSentenceTokenId = 2
|
| 270 |
+
kEosTokenId = 1
|
| 271 |
+
mask_sentence_options_cumulative_prob = [0.9, 0.9, 1, 1]
|
| 272 |
+
for index in indexs:
|
| 273 |
+
target_idxs.extend(sentence_id_vec[index])
|
| 274 |
+
choice = random.uniform(0, 1)
|
| 275 |
+
if choice < mask_sentence_options_cumulative_prob[0]:
|
| 276 |
+
# print("mask index: ", index)
|
| 277 |
+
sentence_id_vec[index] = [kMaskSentenceTokenId]
|
| 278 |
+
elif choice < mask_sentence_options_cumulative_prob[1]:
|
| 279 |
+
# print("replace index: ", index)
|
| 280 |
+
replace_id = random.randint(0, len(sentence_id_vec))
|
| 281 |
+
sentence_id_vec[index] = sentence_id_vec[replace_id]
|
| 282 |
+
elif choice < mask_sentence_options_cumulative_prob[2]:
|
| 283 |
+
pass
|
| 284 |
+
else:
|
| 285 |
+
sentence_id_vec[index] = []
|
| 286 |
+
|
| 287 |
+
target_idxs.append(kEosTokenId)
|
| 288 |
+
# print(sentence_id_vec)
|
| 289 |
+
for index, sentence_id in enumerate(sentence_id_vec):
|
| 290 |
+
# print(index, sentence_id)
|
| 291 |
+
if len(sentence_id) == 0:
|
| 292 |
+
continue
|
| 293 |
+
input_idxs.extend(sentence_id_vec[index])
|
| 294 |
+
|
| 295 |
+
input_idxs.append(kEosTokenId)
|
| 296 |
+
return input_idxs, target_idxs
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int,
|
| 300 |
+
decoder_start_token_id: int):
|
| 301 |
+
"""
|
| 302 |
+
Shift input ids one token to the right.
|
| 303 |
+
"""
|
| 304 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
| 305 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
| 306 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 307 |
+
|
| 308 |
+
if pad_token_id is None:
|
| 309 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
| 310 |
+
# replace possible -100 values in labels by `pad_token_id`
|
| 311 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
| 312 |
+
|
| 313 |
+
return shifted_input_ids
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def padding_to_maxlength(ids, max_length, pad_id):
|
| 317 |
+
cur_len = len(ids)
|
| 318 |
+
len_diff = max_length - cur_len
|
| 319 |
+
return ids + [pad_id] * len_diff, [1] * cur_len + [0] * len_diff
|