File size: 21,107 Bytes
96c67b7
 
12f59da
 
 
919a2b5
 
96c67b7
 
 
 
 
 
 
 
12f59da
 
 
 
 
 
 
 
04447ea
 
 
 
40882d2
04447ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2c374a
04447ea
902de67
9ac44b1
04447ea
 
90c7701
 
04447ea
 
90c7701
 
 
04447ea
2a64d15
 
 
 
 
 
 
 
04447ea
 
 
40882d2
04447ea
90c7701
40882d2
04447ea
90c7701
 
 
 
04447ea
90c7701
04447ea
 
 
 
 
12f59da
 
7ffe204
 
 
 
12f59da
 
 
 
 
 
 
 
 
 
 
 
 
 
523da05
7ffe204
 
 
 
 
 
 
 
 
52583fc
7ffe204
 
 
12f59da
7ffe204
52583fc
 
 
7ffe204
 
 
12f59da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04447ea
 
12f59da
 
04447ea
 
 
96c67b7
 
04447ea
12f59da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c67b7
 
 
 
 
 
 
12f59da
 
96c67b7
12f59da
 
96c67b7
 
 
12f59da
96c67b7
 
 
 
 
 
12f59da
 
 
 
 
 
 
 
 
 
 
 
96c67b7
 
 
 
12f59da
96c67b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f59da
 
96c67b7
 
12f59da
 
52583fc
 
96c67b7
12f59da
96c67b7
 
 
 
 
12f59da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c67b7
12f59da
96c67b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f59da
 
 
04447ea
96c67b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04447ea
96c67b7
 
 
 
 
12f59da
 
 
96c67b7
12f59da
04447ea
 
 
96c67b7
 
12f59da
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import logging
import sys
from dataclasses import dataclass, make_dataclass
from enum import Enum

import numpy as np

from src.display.formatting import make_clickable_model, model_hyperlink

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout)],
    level=logging.INFO,
)


def fields(raw_class):
    return [
        v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
    ]


### The Models (System-Under-Study, SUT) we're evaluating. ###


class ModelType(Enum):
    BASE = "πŸŸ₯ Base"
    SFT = "β­• SFT"
    PREFERENCE_ALIGNED = "♦️ Preference-aligned"
    UNKNOWN = "❓ Unknown"


class Multilingual(Enum):
    MONOLINGUAL = "🟠 Monolingual"
    MULTILINGUAL = "🟒 Multilingual"
    SEA = "πŸ”΅ SEA-Focused"
    UNKNOWN = "❓ Unknown"


@dataclass
class ModelSUT:
    # fmt: off
    param_size: float # Number of parameters
    model_type: str # Model type: SFT, Preference-aligned
    multilingual: str # Multilingual: Monolingual, SEA-focused, Multilingual
    # fmt: on


model_registry = {
    # fmt: off
    "gpt-4o-2024-08-06": ModelSUT(param_size=-1, model_type=ModelType.UNKNOWN.value, multilingual=Multilingual.MULTILINGUAL.value),
    "gpt-4o-mini": ModelSUT(param_size=-1, model_type=ModelType.UNKNOWN.value, multilingual=Multilingual.MULTILINGUAL.value),
    "aisingapore/gemma2-9b-cpt-sea-lionv3-instruct": ModelSUT(param_size=9, model_type=ModelType.SFT.value, multilingual=Multilingual.SEA.value),
    "aisingapore/llama3.1-8b-cpt-sea-lionv3-instruct": ModelSUT(param_size=8, model_type=ModelType.SFT.value, multilingual=Multilingual.SEA.value),
    "aisingapore/Llama-SEA-LION-v3-70B-IT": ModelSUT(param_size=70, model_type=ModelType.SFT.value, multilingual=Multilingual.SEA.value),
    "google/gemma-2-9b-it": ModelSUT(param_size=9, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "google/gemma-2-27b-it": ModelSUT(param_size=27, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "google/gemma-3-27b-it": ModelSUT(param_size=27, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "google/gemma-3-12b-it": ModelSUT(param_size=12, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "sail/Sailor2-20B-Chat": ModelSUT(param_size=20, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.SEA.value),
    "sail/Sailor2-8B-Chat": ModelSUT(param_size=8, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.SEA.value),
    "Qwen/Qwen2.5-72B-Instruct": ModelSUT(param_size=72, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Qwen/Qwen2.5-32B-Instruct": ModelSUT(param_size=32, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Qwen/Qwen2.5-14B-Instruct": ModelSUT(param_size=14, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Qwen/Qwen2.5-7B-Instruct": ModelSUT(param_size=7, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Qwen/Qwen3-32B": ModelSUT(param_size=32, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Qwen/Qwen3-14B": ModelSUT(param_size=14, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Qwen/Qwen3-8B": ModelSUT(param_size=8, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Qwen/Qwen3-4B": ModelSUT(param_size=4, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.MULTILINGUAL.value),
    "aisingapore/Llama-SEA-LION-v3.5-70B-R": ModelSUT(param_size=70, model_type=ModelType.SFT.value, multilingual=Multilingual.SEA.value),
    "aisingapore/Llama-SEA-LION-v3.5-8B-R": ModelSUT(param_size=8, model_type=ModelType.SFT.value, multilingual=Multilingual.SEA.value),
    "CohereLabs/c4ai-command-a-03-2025": ModelSUT(param_size=111, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.MULTILINGUAL.value),
    "CohereLabs/c4ai-command-r7b-12-2024": ModelSUT(param_size=7, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.MULTILINGUAL.value),
    "SeaLLMs/SeaLLMs-v3-1.5B-Chat": ModelSUT(param_size=1.5, model_type=ModelType.SFT.value, multilingual=Multilingual.SEA.value),
    "SeaLLMs/SeaLLMs-v3-7B-Chat": ModelSUT(param_size=7, model_type=ModelType.SFT.value, multilingual=Multilingual.SEA.value),
    "mistralai/Ministral-8B-Instruct-2410": ModelSUT(param_size=8, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "mistralai/Mixtral-8x7B-Instruct-v0.1": ModelSUT(param_size=47, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Tower-Babel/Babel-9B-Chat": ModelSUT(param_size=9, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Tower-Babel/Babel-83B-Chat": ModelSUT(param_size=83, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "Tower-Babel/Babel-83B": ModelSUT(param_size=83, model_type=ModelType.BASE.value, multilingual=Multilingual.MULTILINGUAL.value),
    "meta-llama/Llama-3.1-8B-Instruct": ModelSUT(param_size=8, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "meta-llama/Llama-3.1-70B-Instruct": ModelSUT(param_size=70, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8": ModelSUT(param_size=400, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.MULTILINGUAL.value),
    "meta-llama/Llama-4-Scout-17B-16E-Instruct": ModelSUT(param_size=109, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.MULTILINGUAL.value),
    "mistralai/Mixtral-8x22B-Instruct-v0.1": ModelSUT(param_size=141, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "CohereForAI/aya-expanse-32b": ModelSUT(param_size=32, model_type=ModelType.PREFERENCE_ALIGNED.value, multilingual=Multilingual.MULTILINGUAL.value),
    "neulab/Pangea-7B": ModelSUT(param_size=7, model_type=ModelType.SFT.value, multilingual=Multilingual.MULTILINGUAL.value),
    "HuggingFaceTB/SmolLM-1.7B-Instruct": ModelSUT(param_size=1.7, model_type=ModelType.SFT.value, multilingual=Multilingual.MONOLINGUAL.value),
    # fmt: on
}


### The Task and Tasks classes store information about each benchmark we're scoring.  ###
class TaskCategory(Enum):
    CULTURAL_KNOWLEDGE = "🌏 Cultural Knowledge"
    CLASSICAL_NLP = "πŸ›οΈ Classical NLP"
    READING_COMPREHENSION = "πŸ“– Reading Comprehension"
    TRANSLATION = "πŸ”’ Generation"


@dataclass
class Task:
    benchmark: str  # benchmark name in the results file
    metric: str  # metric to display
    col_name: str  # column name to display
    language: str  # language being evaluated
    category: str  # choice between different task categories
    num_samples: int  # canonical number of examples


class Tasks(Enum):
    # fmt: off
    balita_tgl_mcf = Task("balita_tgl_mcf", "acc_", "πŸ›οΈ BalitaNLP", "tgl", TaskCategory.CLASSICAL_NLP, 35_177)
    belebele_ceb_mcf = Task("belebele_ceb_mcf", "acc_", "πŸ“– Belebele (ceb)", "ceb", TaskCategory.READING_COMPREHENSION, 900)
    belebele_fil_mcf = Task("belebele_fil_mcf", "acc_", "πŸ“– Belebele (fil)", "fil", TaskCategory.READING_COMPREHENSION, 900)
    cebuaner_ceb_mcf = Task("cebuaner_ceb_mcf", "acc_", "πŸ›οΈ CebuaNER", "ceb", TaskCategory.CLASSICAL_NLP, 1310)
    dengue_filipino_fil = Task("dengue_filipino_fil:_average", "acc_norm", "πŸ›οΈ Dengue", "fil", TaskCategory.CLASSICAL_NLP, 4015)
    firecs_fil_mcf = Task("firecs_fil_mcf", "acc_", "πŸ›οΈ FiReCS", "fil", TaskCategory.CLASSICAL_NLP, 7340)
    global_mmlu_all_tgl = Task("global_mmlu_all_tgl_mcf:_average", "acc_", "🌏 Global-MMLU", "tgl", TaskCategory.CULTURAL_KNOWLEDGE, 14_042)
    include_tgl_mcf = Task("include_tgl_mcf:_average", "acc_", "🌏 INCLUDE", "tgl", TaskCategory.CULTURAL_KNOWLEDGE, 500)
    kalahi_tgl_mcf = Task("kalahi_tgl_mcf", "acc_", "🌏 KALAHI", "tgl", TaskCategory.CULTURAL_KNOWLEDGE, 150)
    newsphnli_fil_mcf = Task("newsphnli_fil_mcf", "acc_", "πŸ“– NewsPH NLI", "fil", TaskCategory.READING_COMPREHENSION, 90_000)
    ntrex128_fil = Task("ntrex128_fil", "rougeL", "πŸ”’ NTREX-128", "fil", TaskCategory.TRANSLATION, 1997)
    readability_ceb_mcf = Task("readability_ceb_mcf", "acc_", "πŸ“– Readability (ceb)", "ceb", TaskCategory.READING_COMPREHENSION, 350)
    sib200_ceb_mcf = Task("sib200_ceb_mcf", "acc_", "πŸ›οΈ SIB-200 (ceb)", "ceb", TaskCategory.CLASSICAL_NLP, 99)
    sib200_tgl_mcf = Task("sib200_tgl_mcf", "acc_", "πŸ›οΈ SIB-200 (tgl)", "tgl", TaskCategory.CLASSICAL_NLP, 99)
    # stingraybench_corr_tgl_mcf = Task("stingraybench_correctness_tgl_mcf", "acc_", "StingrayBench (Correctness)", "tgl", TaskCategory.CULTURAL_KNOWLEDGE, 100)
    stingraybench_sem_appropriateness_tgl_mcf = Task("stingraybench_semantic_appropriateness_tgl_mcf", "acc_", "🌏StingrayBench", "tgl", TaskCategory.CULTURAL_KNOWLEDGE, 100)
    tatoeba_ceb = Task("tatoeba_ceb", "rougeL", "πŸ”’ Tatoeba (ceb)", "ceb", TaskCategory.TRANSLATION, 377)
    tatoeba_tgl = Task("tatoeba_tgl", "rougeL", "πŸ”’ Tatoeba (tgl)", "tgl", TaskCategory.TRANSLATION, 2499)
    tico19_tgl = Task("tico19_tgl", "rougeL", "πŸ”’ TICO-19", "tgl", TaskCategory.TRANSLATION, 971)
    tlunifiedner_tgl_mcf = Task("tlunifiedner_tgl_mcf", "acc_", "πŸ›οΈ TLUnified NER", "tgl", TaskCategory.CLASSICAL_NLP, 1579)
    universalner_ceb_mcf = Task("universalner_ceb_mcf", "acc_", "πŸ›οΈ Universal NER (ceb)", "ceb", TaskCategory.CLASSICAL_NLP, 49)
    universalner_tgl_mcf = Task("universalner_tgl_mcf", "acc_", "πŸ›οΈ Universal NER (tgl)", "tgl", TaskCategory.CLASSICAL_NLP, 56)
    # fmt: on


### These classes define how the columns will be represented ###
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    aggregate: bool = False
    meta: bool = False


auto_eval_cols = [
    # fmt: off
    ["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True, meta=True)],
    ["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, meta=True)],
    ["precision", ColumnContent, ColumnContent("Precision", "str", False, meta=True)],
    ["param_size", ColumnContent, ColumnContent("# Parameters", "number", False, meta=True)],
    ["multilingual", ColumnContent, ColumnContent("Multilingual", "markdown", False, meta=True)],
    ["model_type", ColumnContent, ColumnContent("Model Type", "markdown", False, meta=True)],
    ["is_submission", ColumnContent, ColumnContent("Submission", "boolean", False, meta=True)],
    ["submission_date", ColumnContent, ColumnContent("Submission Date", "str", False, meta=True)],
    # fmt: on
]
for task in Tasks:
    auto_eval_cols.append(
        [task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]
    )

for task_category in TaskCategory:
    auto_eval_cols.append(
        [
            task_category.name,
            ColumnContent,
            ColumnContent(task_category.value, "number", True, aggregate=True),
        ]
    )

AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_cols, frozen=True)


### These classes define how a single model evaluation result will be represented  ###
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown


@dataclass
class EvalResult:
    """Represent one full model evaluation."""

    eval_name: str
    full_model: str
    org: str
    model: str
    results: dict
    average: float
    aggregate_results: dict
    precision: Precision = Precision.Unknown
    # Submission metadata
    is_submission: bool = False
    param_size: float = -1
    model_type: str = ModelType.UNKNOWN.value
    multilingual: str = Multilingual.UNKNOWN.value
    submission_date: str = ""
    model_url: str = "https://huggingface.co/spaces/UD-Filipino/filbench-leaderboard"

    @classmethod
    def init_from_dict(self, data: dict, is_submission: bool = False) -> "EvalResult":
        """Populate results from a dictionary"""

        # For model details, use user-provided metadata if it's a submission
        config_key = "display_metadata" if is_submission else "config"
        config = data.get(config_key)
        precision = Precision.from_str(config.get("model_dtype"))

        org_and_model = (
            config.get("hf_id")
            if is_submission
            else config.get("model_name", config.get("model_args", None))
        )
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        results = EvalResult.compute_scores_per_benchmark(data.get("results"))
        aggregate_results = EvalResult.compute_aggregate_results(results)
        filbench_score = np.mean(list(aggregate_results.values()))

        # Format all results
        if is_submission:
            # Use pre-computed scores and check if they match our computed scores
            category_scores = data.get("category_scores")
            aggregate_results_precomputed = {
                TaskCategory.CULTURAL_KNOWLEDGE.value: category_scores.get(
                    "CULTURAL_KNOWLEDGE"
                ),
                TaskCategory.CLASSICAL_NLP.value: category_scores.get("CLASSICAL_NLP"),
                TaskCategory.READING_COMPREHENSION.value: category_scores.get(
                    "READING_COMPREHENSION"
                ),
                TaskCategory.TRANSLATION.value: category_scores.get("GENERATION"),
            }
            is_similar = EvalResult.compare_category_scores(
                precomputed=aggregate_results_precomputed,
                computed=aggregate_results,
            )
            if not is_similar:
                logging.warning("Precomputed and computed category scores differ.")
                logging.info("Will use computed scores for display.")
            else:
                logging.info("Precomputed and computed category scores are similar.")
                aggregate_results = aggregate_results_precomputed

            # Do the same comparison for FilBench score
            filbench_score_precomputed = data.get("filbench_score")
            is_filbench_score_similar = (
                abs(filbench_score_precomputed - filbench_score) < 1e-2
            )
            if not is_filbench_score_similar:
                logging.warning(
                    f"Precomputed filbench_score ({filbench_score_precomputed}) and"
                    f" official FilBench score ({filbench_score}) differ."
                )
            average = (
                filbench_score_precomputed
                if is_filbench_score_similar
                else filbench_score
            )
            display_metadata = data.get("display_metadata")

            return EvalResult(
                eval_name=result_key,
                full_model=full_model,
                org=org,
                model=model,
                precision=precision,
                results=results,
                aggregate_results=aggregate_results,
                average=average,
                # Display Metadata
                is_submission=True,
                submission_date=display_metadata.get("submission_date", ""),
                param_size=display_metadata.get("num_params", -1),
                model_type=display_metadata.get("model_type", ModelType.UNKNOWN.value),
                multilingual=display_metadata.get(
                    "multilinguality", Multilingual.UNKNOWN.value
                ),
                model_url=display_metadata.get(
                    "url",
                    "https://huggingface.co/spaces/UD-Filipino/filbench-leaderboard",
                ),
            )
        else:
            return self(
                eval_name=result_key,
                full_model=full_model,
                org=org,
                model=model,
                precision=precision,
                results=results,
                aggregate_results=aggregate_results,
                is_submission=False,
                average=filbench_score,
            )

    @classmethod
    def compute_scores_per_benchmark(cls, results: dict) -> dict[str, float]:
        scores_per_benchmark = {}
        for task in Tasks:
            task = task.value
            if results.get(task.benchmark):
                score = results.get(task.benchmark).get(task.metric)
                if "acc_" in task.metric:
                    score = score * 100.0
                if "rougeL" in task.metric:
                    score = score * 100.0
                scores_per_benchmark[task.benchmark] = score
            else:
                scores_per_benchmark[task.benchmark] = None
        return scores_per_benchmark

    @classmethod
    def compute_aggregate_results(cls, results: dict) -> dict[str, float]:
        aggregate_results = {}
        for task_category in TaskCategory:
            tasks = [
                task.value for task in Tasks if task.value.category == task_category
            ]
            total_category = sum([task.num_samples for task in tasks])
            weighted_total_category = 0
            for task in tasks:
                if results[task.benchmark]:
                    score = results[task.benchmark]
                else:
                    score = 0
                weighted_total_category += score * task.num_samples
            aggregate_results[task_category.value] = (
                weighted_total_category / total_category
            )
        return aggregate_results

    @classmethod
    def compare_category_scores(
        cls, precomputed: dict, computed: dict, threshold: float = 1e-2
    ) -> bool:
        """Compares precomputed and computed category scores."""
        is_similar = True
        for key, precomputed_value in precomputed.items():
            computed_value = computed.get(key)
            if precomputed_value is not None and computed_value is not None:
                if abs(precomputed_value - computed_value) > threshold:
                    logging.warning(
                        f"Aggregate result for '{key}' differs"
                        f" (precomputed={precomputed_value}, computed={computed_value})"
                    )
                    is_similar = False
        return is_similar

    def to_dict(self):
        """Converts the EvalResult to a dict compatible with our dataframe display"""

        if not self.is_submission:
            model_details = model_registry.get(
                self.full_model,
                ModelSUT(
                    param_size=-1,
                    model_type=ModelType.UNKNOWN.value,
                    multilingual=Multilingual.UNKNOWN.value,
                ),
            )
        else:
            model_details = ModelSUT(
                param_size=self.param_size,
                model_type=self.model_type,
                multilingual=self.multilingual,
            )

        model_name_with_url = (
            make_clickable_model(self.full_model)
            if not self.is_submission
            else f"πŸ“₯ {model_hyperlink(self.model_url, self.full_model)}"
        )
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model.name: model_name_with_url,
            AutoEvalColumn.average.name: self.average,
            AutoEvalColumn.param_size.name: model_details.param_size,
            AutoEvalColumn.model_type.name: model_details.model_type,
            AutoEvalColumn.multilingual.name: model_details.multilingual,
            AutoEvalColumn.is_submission.name: self.is_submission,
            AutoEvalColumn.submission_date.name: self.submission_date,
        }

        for task in Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        for task_category in TaskCategory:
            data_dict[task_category.value] = self.aggregate_results[task_category.value]

        return data_dict