File size: 7,330 Bytes
40b178e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import logging
import gradio as gr
import spaces

from depthcrafter.inference import DepthCrafterInference

logging.basicConfig(level=logging.INFO)

examples = [
    # Examples temporarily removed for Hugging Face Spaces deployment
]

# Initialize the inference class globally
depthcrafter_inference = DepthCrafterInference(
    unet_path="tencent/DepthCrafter",
    pre_train_path="stabilityai/stable-video-diffusion-img2vid-xt",
    cpu_offload=None,
    device="cpu",
)


@spaces.GPU(duration=120)
def infer_depth(
    video: str,
    num_denoising_steps: int,
    guidance_scale: float,
    max_res: int = 1024,
    process_length: int = -1,
    target_fps: int = -1,
    save_folder: str = "./demo_output",
    window_size: int = 110,
    overlap: int = 25,
    seed: int = 42,
    track_time: bool = False,
    save_npz: bool = False,
):
    """
    Gradio inference function.
    """
    res_paths = depthcrafter_inference.infer(
        video_path=video,
        num_denoising_steps=num_denoising_steps,
        guidance_scale=guidance_scale,
        save_folder=save_folder,
        window_size=window_size,
        process_length=process_length,
        overlap=overlap,
        max_res=max_res,
        target_fps=target_fps,
        seed=seed,
        track_time=track_time,
        save_npz=save_npz,
    )

    depthcrafter_inference.clear_cache()

    # Returning input and vis as per original code behavior
    return res_paths[:2]


def construct_demo():
    with gr.Blocks(analytics_enabled=False) as depthcrafter_iface:
        gr.Markdown(
            """
            <div align='center'>
            <h1> DepthCrafter: Generating Consistent Long Depth Sequences
            for Open-world Videos </h1>
            <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>
                <a href='https://wbhu.github.io'>Wenbo Hu</a>,
                <a href='https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en'>
                Xiangjun Gao</a>,
                <a href='https://xiaoyu258.github.io/'>Xiaoyu Li</a>,
                <a href='https://scholar.google.com/citations?user=tZ3dS3MAAAAJ&hl=en'>
                Sijie Zhao</a>,
                <a href='https://vinthony.github.io/academic'> Xiaodong Cun</a>,
                <a href='https://yzhang2016.github.io'>Yong Zhang</a>,
                <a href='https://home.cse.ust.hk/~quan'>Long Quan</a>,
                <a href='https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en'>
                Ying Shan</a>
            </h2>
            <a style='font-size:18px;color: #000000'>
            If you find DepthCrafter useful, please help ⭐ the </a>
            <a style='font-size:18px;color: #FF5DB0'
            href='https://github.com/Tencent/DepthCrafter'>[Github Repo]</a>
            <a style='font-size:18px;color: #000000'>
            , which is important to Open-Source projects. Thanks!</a>
            <a style='font-size:18px;color: #000000'
            href='https://arxiv.org/abs/2409.02095'> [ArXiv] </a>
            <a style='font-size:18px;color: #000000'
            href='https://depthcrafter.github.io/'> [Project Page] </a>
            </div>
            """
        )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                input_video = gr.Video(label="Input Video")

            # with gr.Tab(label="Output"):
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):
                    output_video_1 = gr.Video(
                        label="Preprocessed video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        scale=5,
                    )
                    output_video_2 = gr.Video(
                        label="Generated Depth Video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        scale=5,
                    )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Row(equal_height=False):
                    with gr.Accordion("Advanced Settings", open=False):
                        num_denoising_steps = gr.Slider(
                            label="num denoising steps",
                            minimum=1,
                            maximum=25,
                            value=5,
                            step=1,
                        )
                        guidance_scale = gr.Slider(
                            label="cfg scale",
                            minimum=1.0,
                            maximum=1.2,
                            value=1.0,
                            step=0.1,
                        )
                        max_res = gr.Slider(
                            label="max resolution",
                            minimum=512,
                            maximum=2048,
                            value=1024,
                            step=64,
                        )
                        process_length = gr.Slider(
                            label="process length",
                            minimum=-1,
                            maximum=280,
                            value=60,
                            step=1,
                        )
                        process_target_fps = gr.Slider(
                            label="target FPS",
                            minimum=-1,
                            maximum=30,
                            value=15,
                            step=1,
                        )
                    generate_btn = gr.Button("Generate")
            with gr.Column(scale=2):
                pass

        gr.Examples(
            examples=examples,
            inputs=[
                input_video,
                num_denoising_steps,
                guidance_scale,
                max_res,
                process_length,
                process_target_fps,
            ],
            outputs=[output_video_1, output_video_2],
            fn=infer_depth,
            cache_examples=False,
        )
        gr.Markdown(
            """
            <span style='font-size:18px;color: #E7CCCC'>Note:
            For time quota consideration, we set the default parameters
            to be more efficient here, with a trade-off of shorter video
            length and slightly lower quality. You may adjust the parameters
            according to our
            <a style='font-size:18px;color: #FF5DB0'
            href='https://github.com/Tencent/DepthCrafter'>[Github Repo]</a>
             for better results if you have enough time quota.
            </span>
            """
        )

        generate_btn.click(
            fn=infer_depth,
            inputs=[
                input_video,
                num_denoising_steps,
                guidance_scale,
                max_res,
                process_length,
                process_target_fps,
            ],
            outputs=[output_video_1, output_video_2],
        )

    return depthcrafter_iface


if __name__ == "__main__":
    demo = construct_demo()
    demo.queue()
    # demo.launch(server_name="0.0.0.0", server_port=12345,
    #             debug=True, share=False)
    demo.launch(share=True)