File size: 5,734 Bytes
40b178e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import logging
import tempfile
from typing import List, Optional, Tuple, Union

import matplotlib
import mediapy
import numpy as np
import PIL.Image
import torch
from decord import VideoReader, cpu

logger = logging.getLogger(__name__)

dataset_res_dict = {
    "sintel": [448, 1024],
    "scannet": [640, 832],
    "KITTI": [384, 1280],
    "bonn": [512, 640],
    "NYUv2": [448, 640],
}


def read_video_frames(
    video_path: str,
    process_length: int,
    target_fps: int,
    max_res: int,
    dataset: str = "open",
) -> Tuple[np.ndarray, int]:
    """
    Read video frames from a file, resize and downsample them.

    Args:
        video_path (str): Path to the video file.
        process_length (int): Maximum number of frames to process.
        target_fps (int): Target FPS for the output.
        max_res (int): Maximum resolution (height or width).
        dataset (str): Dataset name for resolution settings.

    Returns:
        Tuple[np.ndarray, int]: A tuple containing the frames (numpy array) and the actual FPS.
    """
    if dataset == "open":
        logger.info(f"Processing video: {video_path}")
        vid = VideoReader(video_path, ctx=cpu(0))
        logger.info(
            f"Original video shape: {(len(vid), *vid.get_batch([0]).shape[1:])}"
        )
        original_height, original_width = vid.get_batch([0]).shape[1:3]
        height = round(original_height / 64) * 64
        width = round(original_width / 64) * 64
        if max(height, width) > max_res:
            scale = max_res / max(original_height, original_width)
            height = round(original_height * scale / 64) * 64
            width = round(original_width * scale / 64) * 64
    else:
        height = dataset_res_dict[dataset][0]
        width = dataset_res_dict[dataset][1]

    vid = VideoReader(video_path, ctx=cpu(0), width=width, height=height)

    fps = vid.get_avg_fps() if target_fps == -1 else target_fps
    stride = round(vid.get_avg_fps() / fps)
    stride = max(stride, 1)
    frames_idx = list(range(0, len(vid), stride))
    logger.info(
        f"Downsampled shape: {(len(frames_idx), *vid.get_batch([0]).shape[1:])}, with stride: {stride}"
    )
    if process_length != -1 and process_length < len(frames_idx):
        frames_idx = frames_idx[:process_length]
    logger.info(
        f"Final processing shape: {(len(frames_idx), *vid.get_batch([0]).shape[1:])}"
    )
    frames = vid.get_batch(frames_idx).asnumpy().astype("float32") / 255.0

    return frames, fps


def save_video(
    video_frames: Union[List[np.ndarray], List[PIL.Image.Image], np.ndarray],
    output_video_path: Optional[str] = None,
    fps: int = 10,
    crf: int = 18,
) -> str:
    """
    Save video frames to a file.

    Args:
        video_frames (Union[List[np.ndarray], List[PIL.Image.Image], np.ndarray]): List of frames or numpy array.
        output_video_path (Optional[str]): Path to save the video. If None, a temporary file is created.
        fps (int): Frames per second.
        crf (int): Constant Rate Factor for encoding quality.

    Returns:
        str: Path to the saved video.
    """
    if output_video_path is None:
        output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name

    if isinstance(video_frames, np.ndarray):
        # If it's a numpy array, we assume it's already in the correct format or needs simple conversion
        if video_frames.dtype != np.uint8:
            video_frames = (video_frames * 255).astype(np.uint8)
    elif isinstance(video_frames[0], np.ndarray):
        video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]
    elif isinstance(video_frames[0], PIL.Image.Image):
        video_frames = [np.array(frame) for frame in video_frames]

    mediapy.write_video(output_video_path, video_frames, fps=fps, crf=crf)
    return output_video_path


class ColorMapper:
    """
    A color mapper to map depth values to a certain colormap.
    """

    def __init__(self, colormap: str = "inferno"):
        """
        Initialize the ColorMapper.

        Args:
            colormap (str): Name of the colormap to use.
        """
        self.colormap = torch.tensor(matplotlib.colormaps[colormap].colors)

    def apply(
        self,
        image: torch.Tensor,
        v_min: Optional[float] = None,
        v_max: Optional[float] = None,
    ) -> torch.Tensor:
        """
        Apply the colormap to an image.

        Args:
            image (torch.Tensor): Input image tensor.
            v_min (Optional[float]): Minimum value for normalization.
            v_max (Optional[float]): Maximum value for normalization.

        Returns:
            torch.Tensor: Color-mapped image.
        """
        if v_min is None:
            v_min = image.min()
        if v_max is None:
            v_max = image.max()
        image = (image - v_min) / (v_max - v_min)
        image = (image * 255).long()
        # Clamp values to be within valid range for indexing
        image = torch.clamp(image, 0, 255)
        image = self.colormap[image]
        return image


def vis_sequence_depth(
    depths: np.ndarray, v_min: Optional[float] = None, v_max: Optional[float] = None
) -> np.ndarray:
    """
    Visualize a sequence of depth maps.

    Args:
        depths (np.ndarray): Input depth maps.
        v_min (Optional[float]): Minimum value for normalization.
        v_max (Optional[float]): Maximum value for normalization.

    Returns:
        np.ndarray: Visualized depth maps.
    """
    visualizer = ColorMapper()
    if v_min is None:
        v_min = depths.min()
    if v_max is None:
        v_max = depths.max()
    res = visualizer.apply(torch.tensor(depths), v_min=v_min, v_max=v_max).numpy()
    return res