""" Demo: Option B Pipeline Flow (Without Real Data) Shows exactly how Option B processes your physician query """ import json from datetime import datetime print("=" * 80) print("OPTION B PIPELINE DEMO") print("=" * 80) print() # Your test query query = "what should a physician considering prescribing ianalumab for sjogren's disease know" print(f"📝 PHYSICIAN QUERY:") print(f" {query}") print() # =========================================================================== # STEP 1: QUERY PARSER LLM (Llama-70B) # =========================================================================== print("=" * 80) print("STEP 1: QUERY PARSER LLM (Llama-70B)") print("=" * 80) print("⏱️ Time: ~3 seconds") print("💰 Cost: $0.001") print() # Simulated LLM response parsed_entities = { "drugs": [ "ianalumab", "VAY736", # Research code for ianalumab "anti-BAFF-R antibody" ], "diseases": [ "Sjögren's syndrome", "Sjögren syndrome", "Sjogren's disease", "Sjogren disease", "primary Sjögren's syndrome", "sicca syndrome" ], "companies": [ "Novartis", # Ianalumab manufacturer "Novartis Pharmaceuticals" ], "endpoints": [ "safety", "efficacy", "dosing", "contraindications", "clinical outcomes" ], "search_terms": "ianalumab VAY736 Sjögren syndrome Sjogren disease efficacy safety prescribing" } print("🔍 EXTRACTED ENTITIES:") print(f" Drugs: {parsed_entities['drugs']}") print(f" Diseases: {parsed_entities['diseases'][:3]}...") # Show first 3 print(f" Companies: {parsed_entities['companies']}") print(f" Endpoints: {parsed_entities['endpoints']}") print() print(f"🎯 OPTIMIZED SEARCH QUERY:") print(f" {parsed_entities['search_terms']}") print() # =========================================================================== # STEP 2: RAG SEARCH (BM25 + Semantic + Inverted Index) # =========================================================================== print("=" * 80) print("STEP 2: RAG SEARCH") print("=" * 80) print("⏱️ Time: ~2 seconds") print("💰 Cost: $0 (local)") print() # Simulated search results print("🔎 SEARCH PROCESS:") print(" 1. Inverted Index: Found 'ianalumab' in 8 trials (O(1) lookup)") print(" 2. Semantic Search: Computed similarity for 500,000+ trials") print(" 3. Hybrid Scoring: Combined keyword + semantic scores") print() candidate_trials = [ { "nct_id": "NCT02962895", "title": "A Randomized, Double-blind, Placebo-controlled Study of Ianalumab in Patients With Sjögren's Syndrome", "hybrid_score": 0.856, "snippet": "Phase 2 study evaluating efficacy and safety of ianalumab (VAY736) in primary Sjögren's syndrome..." }, { "nct_id": "NCT03334851", "title": "Extension Study of Ianalumab in Sjögren's Syndrome", "hybrid_score": 0.823, "snippet": "Open-label extension to evaluate long-term safety and efficacy of ianalumab in Sjögren's syndrome..." }, { "nct_id": "NCT02808364", "title": "Safety and Tolerability Study of Ianalumab in Sjögren's Syndrome", "hybrid_score": 0.791, "snippet": "Phase 2a study assessing safety, tolerability, and pharmacokinetics of ianalumab..." } ] print(f"✅ FOUND: {len(candidate_trials)} highly relevant trials") print() for i, trial in enumerate(candidate_trials, 1): print(f" {i}. {trial['nct_id']}") print(f" Hybrid Score: {trial['hybrid_score']:.3f}") print(f" {trial['title'][:80]}...") print() # =========================================================================== # STEP 3: 355M PERPLEXITY RANKING # =========================================================================== print("=" * 80) print("STEP 3: 355M PERPLEXITY RANKING") print("=" * 80) print("⏱️ Time: ~2-5 seconds (GPU) or ~15-30 seconds (CPU)") print("💰 Cost: $0 (local model)") print() print("🧠 355M CLINICAL TRIAL GPT ANALYSIS:") print(" For each trial, calculates: 'How natural is this query-trial pairing?'") print() # Simulated perplexity scores ranked_trials = [ { **candidate_trials[0], "perplexity": 12.4, # Lower = more relevant "perplexity_score": 0.890, "combined_score": 0.923, # 70% hybrid + 30% perplexity "rank_before": 1, "rank_after": 1 }, { **candidate_trials[1], "perplexity": 15.8, "perplexity_score": 0.863, "combined_score": 0.893, "rank_before": 2, "rank_after": 2 }, { **candidate_trials[2], "perplexity": 18.2, "perplexity_score": 0.846, "combined_score": 0.871, "rank_before": 3, "rank_after": 3 } ] for i, trial in enumerate(ranked_trials, 1): print(f" {i}. {trial['nct_id']}") print(f" Perplexity: {trial['perplexity']:.1f} (lower = better)") print(f" Hybrid Score: {trial['hybrid_score']:.3f}") print(f" Combined Score: {trial['combined_score']:.3f}") print(f" Rank: {trial['rank_before']} → {trial['rank_after']}") print() # =========================================================================== # STEP 4: STRUCTURED JSON OUTPUT # =========================================================================== print("=" * 80) print("STEP 4: STRUCTURED JSON OUTPUT") print("=" * 80) print("⏱️ Time: instant") print("💰 Cost: $0") print() # Final structured response final_response = { "query": query, "processing_time": 8.2, "query_analysis": { "extracted_entities": parsed_entities, "optimized_search": parsed_entities['search_terms'], "parsing_time": 3.1 }, "results": { "total_found": len(candidate_trials), "returned": len(ranked_trials), "top_relevance_score": ranked_trials[0]['combined_score'] }, "trials": [ { "nct_id": trial['nct_id'], "title": trial['title'], "status": "Completed", "phase": "Phase 2", "conditions": "Primary Sjögren's Syndrome", "interventions": "Ianalumab (VAY736)", "sponsor": "Novartis Pharmaceuticals", "enrollment": "160 participants", "primary_outcome": "Change in ESSDAI score at Week 24", "description": trial['snippet'], "scoring": { "relevance_score": trial['combined_score'], "hybrid_score": trial['hybrid_score'], "perplexity": trial['perplexity'], "perplexity_score": trial['perplexity_score'], "rank_before_355m": trial['rank_before'], "rank_after_355m": trial['rank_after'], "ranking_method": "355m_perplexity" }, "url": f"https://clinicaltrials.gov/study/{trial['nct_id']}" } for trial in ranked_trials ], "benchmarking": { "query_parsing_time": 3.1, "rag_search_time": 2.3, "355m_ranking_time": 2.8, "total_processing_time": 8.2 } } print("📦 STRUCTURED JSON RESPONSE:") print(json.dumps(final_response, indent=2)[:1000] + "...") print() # =========================================================================== # WHAT THE CLIENT DOES WITH THIS DATA # =========================================================================== print("=" * 80) print("WHAT CHATBOT COMPANIES DO WITH THIS JSON") print("=" * 80) print() print("🤖 CLIENT'S LLM (GPT-4, Claude, etc.) GENERATES:") print() print("─" * 80) print("PHYSICIAN RESPONSE (Generated by Client's LLM):") print("─" * 80) print() print("Based on current clinical trial data, physicians considering prescribing") print("ianalumab for Sjögren's disease should be aware of the following:") print() print("**Clinical Evidence:**") print(f"- {len(ranked_trials)} major clinical trials have evaluated ianalumab in Sjögren's syndrome") print() print("**Primary Trial (NCT02962895):**") print("- Phase 2, randomized, double-blind, placebo-controlled study") print("- 160 participants with primary Sjögren's syndrome") print("- Primary endpoint: Change in ESSDAI (disease activity) score at Week 24") print("- Status: Completed") print("- Sponsor: Novartis Pharmaceuticals") print() print("**Drug Information:**") print("- Generic name: Ianalumab") print("- Research code: VAY736") print("- Mechanism: Anti-BAFF-R (B-cell activating factor receptor) antibody") print() print("**Key Considerations:**") print("1. Safety profile from completed Phase 2 trials available") print("2. Long-term extension study (NCT03334851) provides extended safety data") print("3. Efficacy measured by ESSDAI score reduction") print("4. Appropriate for patients with primary Sjögren's syndrome") print() print("**Additional Resources:**") print(f"- NCT02962895: https://clinicaltrials.gov/study/NCT02962895") print(f"- NCT03334851: https://clinicaltrials.gov/study/NCT03334851") print(f"- NCT02808364: https://clinicaltrials.gov/study/NCT02808364") print() print("**Note:** This information is based on clinical trial data. Please refer") print("to the complete prescribing information and consult current clinical") print("guidelines before prescribing.") print("─" * 80) print() # =========================================================================== # SUMMARY # =========================================================================== print("=" * 80) print("OPTION B SUMMARY") print("=" * 80) print() print("✅ WHAT OPTION B PROVIDES:") print(" • Fast query parsing with entity extraction (Llama-70B)") print(" • Accurate trial retrieval (Hybrid RAG)") print(" • Clinical relevance ranking (355M perplexity)") print(" • Structured JSON output with all trial data") print() print("⏱️ TOTAL TIME: ~8 seconds (with GPU) or ~20-25 seconds (CPU)") print("💰 TOTAL COST: $0.001 per query") print() print("❌ WHAT OPTION B DOESN'T DO:") print(" • Does NOT generate text responses") print(" • Does NOT use 355M for text generation (prevents hallucinations)") print(" • Does NOT include 3-agent orchestration") print() print("🎯 WHY THIS IS PERFECT:") print(" • Chatbot companies control response generation") print(" • Your API focuses on accurate search & ranking") print(" • Fast, cheap, and reliable") print(" • No hallucinations (355M only scores, doesn't generate)") print() print("=" * 80) # Save to file with open("demo_option_b_output.json", "w") as f: json.dump(final_response, f, indent=2) print() print(f"💾 Full JSON response saved to: demo_option_b_output.json") print()