manan-ml-api / app.py
CodeGovindz
Add calculate_day_score endpoint for emotion scoring
af88b32
import os
import tempfile
import logging
import numpy as np
import torch
import torch.nn as nn
import whisper
import librosa
import asyncio
import random
import requests
from datetime import datetime, timedelta
from typing import List, Dict, Any, Optional
from fastapi import FastAPI, UploadFile, File, HTTPException, Request, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from PIL import Image
from torchvision import transforms
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
from speechbrain.inference.classifiers import EncoderClassifier
import torchaudio
import json
from pydantic import BaseModel
from supabase import create_client, Client
# Setup logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
)
logger = logging.getLogger(__name__)
class ModelManager:
"""Centralized model management for all ML models."""
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(ModelManager, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
self._initialized = True
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {self.device}")
self.emotion_model = None
self.whisper_model = None
self.text_tokenizer = None
self.text_model = None
self.speechbrain_model = None
# Model paths
self.MODEL_PATHS = {
'whisper_model': 'base',
'text_model': 'emotion-distilbert-model',
'speechbrain_model': 'speechbrain/emotion-recognition-wav2vec2-IEMOCAP'
}
# Constants
self.EMOTIONS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
self.SAMPLE_RATE = 16000
self.TEXT_EMOTIONS = ["sadness", "joy", "love", "anger", "fear", "surprise"]
# SpeechBrain emotion mapping
self.SPEECHBRAIN_EMOTION_MAP = {
'neu': 'Neutral',
'hap': 'Happy',
'sad': 'Sad',
'ang': 'Angry',
'fea': 'Fear',
'dis': 'Disgust',
'sur': 'Surprise'
}
def load_all_models(self):
"""Load all required models."""
try:
logger.info("Starting to load all models...")
self._load_emotion_model()
self._load_whisper_model()
self._load_text_models()
self._load_speechbrain_model()
logger.info("All models loaded successfully!")
return True
except Exception as e:
logger.error(f"Error loading models: {str(e)}")
raise
def _load_emotion_model(self):
"""Use DeepFace for emotion recognition."""
try:
logger.info("Loading DeepFace for emotion recognition...")
from deepface import DeepFace
self.emotion_model = DeepFace
logger.info("DeepFace loaded successfully")
except Exception as e:
logger.error(f"Failed to initialize DeepFace: {str(e)}")
raise
def _load_whisper_model(self):
"""Load the Whisper speech-to-text model."""
try:
logger.info("Loading Whisper model...")
self.whisper_model = whisper.load_model(self.MODEL_PATHS['whisper_model'])
logger.info("Whisper model loaded successfully")
except Exception as e:
logger.error(f"Failed to load Whisper model: {str(e)}")
raise
def _load_text_models(self):
"""Load the text emotion classification model and tokenizer."""
try:
logger.info("Loading text emotion model...")
model_path = self.MODEL_PATHS['text_model']
# Try to load from local path first, then from HuggingFace Hub
if os.path.exists(model_path):
self.text_tokenizer = DistilBertTokenizerFast.from_pretrained(model_path)
self.text_model = DistilBertForSequenceClassification.from_pretrained(model_path)
else:
# Use a public emotion model from HuggingFace
logger.info("Local model not found, using HuggingFace model...")
self.text_tokenizer = DistilBertTokenizerFast.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
self.text_model = DistilBertForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
self.text_model.eval()
logger.info("Text models loaded successfully")
except Exception as e:
logger.error(f"Failed to load text models: {str(e)}")
raise
def _load_speechbrain_model(self):
"""Load SpeechBrain emotion recognition model."""
try:
logger.info("Loading SpeechBrain emotion recognition model...")
self.speechbrain_model = EncoderClassifier.from_hparams(
source=self.MODEL_PATHS['speechbrain_model'],
savedir="pretrained_models/emotion-recognition-wav2vec2-IEMOCAP",
run_opts={"device": "cpu"}
)
logger.info("SpeechBrain emotion recognition model loaded successfully")
except Exception as e:
logger.error(f"Failed to load SpeechBrain model: {str(e)}")
raise
def get_emotion_model(self):
if self.emotion_model is None:
self._load_emotion_model()
return self.emotion_model
def get_whisper_model(self):
if self.whisper_model is None:
self._load_whisper_model()
return self.whisper_model
def get_text_models(self):
if self.text_model is None or self.text_tokenizer is None:
self._load_text_models()
return self.text_tokenizer, self.text_model
def get_speechbrain_model(self):
if self.speechbrain_model is None:
self._load_speechbrain_model()
return self.speechbrain_model
# Initialize FastAPI app
app = FastAPI(title="Manan ML API - Emotion Recognition")
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
expose_headers=["*"]
)
# Initialize model manager
model_manager = ModelManager()
# Image transformation pipeline
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
@app.on_event("startup")
async def startup_event():
"""Initialize all models when the application starts."""
try:
logger.info("Starting model initialization...")
model_manager.load_all_models()
logger.info("All models initialized successfully!")
except Exception as e:
logger.error(f"Failed to initialize models: {str(e)}")
# Don't raise - let the app start and load models on demand
@app.get("/")
async def root():
"""Health check endpoint."""
return {
"status": "running",
"message": "Manan ML API is running!",
"endpoints": [
"/pred_face - Face emotion prediction",
"/predict_audio_batch - Voice emotion prediction",
"/predict_text/ - Text emotion prediction"
]
}
@app.get("/health")
async def health_check():
"""Health check endpoint."""
return {"status": "healthy", "device": str(model_manager.device)}
# Helper function for SpeechBrain prediction
def predict_emotion_speechbrain(audio_path: str) -> Dict[str, Any]:
"""Predict emotion from audio using SpeechBrain."""
try:
speechbrain_model = model_manager.get_speechbrain_model()
signal, sr = torchaudio.load(audio_path)
if sr != 16000:
resampler = torchaudio.transforms.Resample(sr, 16000)
signal = resampler(signal)
if signal.dim() == 1:
signal = signal.unsqueeze(0)
elif signal.dim() == 3:
signal = signal.squeeze(1)
device = next(speechbrain_model.mods.wav2vec2.parameters()).device
signal = signal.to(device)
with torch.no_grad():
feats = speechbrain_model.mods.wav2vec2(signal)
pooled = speechbrain_model.mods.avg_pool(feats)
out = speechbrain_model.mods.output_mlp(pooled)
out_prob = speechbrain_model.hparams.softmax(out)
score, index = torch.max(out_prob, dim=-1)
predicted_emotion = speechbrain_model.hparams.label_encoder.decode_ndim(index.cpu())
if isinstance(predicted_emotion, list):
if isinstance(predicted_emotion[0], list):
emotion_key = str(predicted_emotion[0][0]).lower()[:3]
else:
emotion_key = str(predicted_emotion[0]).lower()[:3]
else:
emotion_key = str(predicted_emotion).lower()[:3]
emotion = model_manager.SPEECHBRAIN_EMOTION_MAP.get(emotion_key, 'Neutral')
probs = out_prob[0].detach().cpu().numpy()
if probs.ndim > 1:
probs = probs.flatten()
all_emotions = speechbrain_model.hparams.label_encoder.decode_ndim(
torch.arange(len(probs))
)
prob_dict = {}
for i in range(len(probs)):
if i < len(all_emotions):
if isinstance(all_emotions[i], list):
key = str(all_emotions[i][0]).lower()[:3]
else:
key = str(all_emotions[i]).lower()[:3]
emotion_name = model_manager.SPEECHBRAIN_EMOTION_MAP.get(key, f'emotion_{i}')
prob_dict[emotion_name] = float(probs[i])
confidence = float(score[0])
return {
'emotion': emotion,
'confidence': confidence,
'probabilities': prob_dict
}
except Exception as e:
logger.error(f"Error predicting emotion with SpeechBrain: {str(e)}")
raise
def transcribe_audio(audio_path: str) -> str:
"""Transcribe audio to text using Whisper."""
try:
result = model_manager.whisper_model.transcribe(audio_path)
return result["text"].strip()
except Exception as e:
logger.error(f"Error in audio transcription: {str(e)}")
return ""
# ============== API ENDPOINTS ==============
@app.post("/pred_face")
async def predict_face_emotion(
files: List[UploadFile] = File(...),
questions: str = Form(None)
):
"""Predict emotions from face images using DeepFace."""
from deepface import DeepFace
logger.info(f"Received {len(files)} files for face prediction")
if not files:
raise HTTPException(status_code=400, detail="No files provided")
temp_files = []
try:
questions_data = {}
question_count = 0
if questions:
try:
questions_data = json.loads(questions)
question_count = len(questions_data)
except json.JSONDecodeError:
raise HTTPException(status_code=400, detail="Invalid questions JSON format.")
else:
question_count = 3
questions_data = {str(i): {"text": f"Question {i+1}", "imageCount": 1} for i in range(question_count)}
question_files = {str(i): [] for i in range(question_count)}
for file in files:
if '_' in file.filename and file.filename.startswith('q'):
try:
q_idx = file.filename.split('_')[0][1:]
if q_idx in question_files:
question_files[q_idx].append(file)
except Exception as e:
logger.warning(f"Skipping file {file.filename}: {e}")
results = []
for q_idx, q_files in question_files.items():
if not q_files:
results.append({
"emotion": "Unknown",
"probabilities": {e: 0.0 for e in model_manager.EMOTIONS}
})
continue
probs_list = []
for file in q_files:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
content = await file.read()
tmp.write(content)
temp_path = tmp.name
temp_files.append(temp_path)
analysis = DeepFace.analyze(
img_path=temp_path,
actions=['emotion'],
enforce_detection=False,
silent=True
)
if isinstance(analysis, list):
analysis = analysis[0]
emotion_scores = analysis.get('emotion', {})
dominant_emotion = analysis.get('dominant_emotion', 'neutral')
normalized_probs = {}
for emo in model_manager.EMOTIONS:
key = emo.lower()
normalized_probs[emo] = emotion_scores.get(key, 0.0) / 100.0
probs_list.append(normalized_probs)
except Exception as e:
logger.error(f"Error processing {file.filename}: {e}")
if probs_list:
avg_probs = {}
for emo in model_manager.EMOTIONS:
avg_probs[emo] = sum(p.get(emo, 0) for p in probs_list) / len(probs_list)
dominant_emotion = max(avg_probs, key=avg_probs.get)
results.append({
"emotion": dominant_emotion,
"probabilities": avg_probs
})
else:
results.append({
"emotion": "Unknown",
"probabilities": {e: 0.0 for e in model_manager.EMOTIONS}
})
return results
except Exception as e:
logger.error(f"Error in face emotion prediction: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
finally:
for file_path in temp_files:
try:
if os.path.exists(file_path):
os.remove(file_path)
except Exception as e:
logger.warning(f"Failed to delete temp file {file_path}: {e}")
@app.post("/predict_audio_batch")
async def predict_audio_batch(files: List[UploadFile] = File(...)):
"""Predict emotions from multiple audio files using SpeechBrain."""
logger.info(f"Received {len(files)} audio files for prediction")
if not files:
raise HTTPException(status_code=400, detail="No audio files provided")
temp_files = []
results = []
try:
for file in files:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
content = await file.read()
tmp.write(content)
temp_path = tmp.name
temp_files.append(temp_path)
prediction = predict_emotion_speechbrain(temp_path)
results.append(prediction)
logger.info(f"Predicted emotion for {file.filename}: {prediction['emotion']}")
except Exception as e:
logger.error(f"Error processing {file.filename}: {e}")
results.append({
'emotion': 'Unknown',
'confidence': 0.0,
'probabilities': {},
'error': str(e)
})
return {'status': 'success', 'results': results}
except Exception as e:
logger.error(f"Error in audio batch prediction: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
finally:
for file_path in temp_files:
try:
if os.path.exists(file_path):
os.remove(file_path)
except Exception as e:
logger.warning(f"Failed to delete temp file {file_path}: {e}")
@app.post("/predict_text/")
async def predict_text_emotion(files: List[UploadFile] = File(...)):
"""Transcribe audio and predict text emotion."""
logger.info(f"Received {len(files)} audio files for text prediction")
if not files:
raise HTTPException(status_code=400, detail="No audio files provided")
temp_files = []
results = []
try:
tokenizer, text_model = model_manager.get_text_models()
whisper_model = model_manager.get_whisper_model()
for file in files:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
content = await file.read()
tmp.write(content)
temp_path = tmp.name
temp_files.append(temp_path)
# Transcribe
transcription = whisper_model.transcribe(temp_path)
transcript = transcription["text"].strip()
logger.info(f"Transcribed: {transcript}")
if not transcript:
results.append({
'transcript': '',
'emotion': 'neutral',
'confidence': 0.0,
'probabilities': {}
})
continue
# Predict emotion from text
inputs = tokenizer(
transcript,
return_tensors="pt",
truncation=True,
max_length=128,
padding=True
)
with torch.no_grad():
outputs = text_model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)[0]
# Get emotion labels
emotion_labels = model_manager.TEXT_EMOTIONS
if hasattr(text_model.config, 'id2label'):
emotion_labels = [text_model.config.id2label[i] for i in range(len(probs))]
prob_dict = {emotion_labels[i]: float(probs[i]) for i in range(len(probs))}
predicted_idx = torch.argmax(probs).item()
predicted_emotion = emotion_labels[predicted_idx]
confidence = float(probs[predicted_idx])
results.append({
'transcript': transcript,
'emotion': predicted_emotion,
'confidence': confidence,
'probabilities': prob_dict
})
except Exception as e:
logger.error(f"Error processing {file.filename}: {e}")
results.append({
'transcript': '',
'emotion': 'unknown',
'confidence': 0.0,
'error': str(e)
})
return results
except Exception as e:
logger.error(f"Error in text prediction: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
finally:
for file_path in temp_files:
try:
if os.path.exists(file_path):
os.remove(file_path)
except Exception as e:
logger.warning(f"Failed to delete temp file {file_path}: {e}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
# =============================================================================
# AUTHENTICATION & USER MANAGEMENT ENDPOINTS
# =============================================================================
# Supabase configuration
SUPABASE_URL = os.environ.get("SUPABASE_URL")
SUPABASE_KEY = os.environ.get("SUPABASE_KEY")
BREVO_API_KEY = os.environ.get("EMAIL_API")
# Initialize Supabase client
supabase: Client = None
try:
if SUPABASE_URL and SUPABASE_KEY:
supabase = create_client(SUPABASE_URL, SUPABASE_KEY)
logger.info("Supabase client initialized successfully")
else:
logger.warning("Supabase credentials not found in environment variables")
except Exception as e:
logger.error(f"Failed to initialize Supabase: {str(e)}")
# OTP storage (in-memory, resets on restart)
otp_store = {}
# -------------------------------
# Request Models for Auth
# -------------------------------
class OTPRequest(BaseModel):
email: str
class OTPVerifyRequest(BaseModel):
email: str
otp: str
class RegisterUserRequest(BaseModel):
name: str
email: str
password: str
class SendEmotionRequest(BaseModel):
email: str
emotion: str
class UpdateProfilePicRequest(BaseModel):
email: str
profile_pic_url: str
class UpdateProfileRequest(BaseModel):
email: str
name: str = None
age: int = None
phone: str = None
# -------------------------------
# Helper Function - Send Email via Brevo
# -------------------------------
def send_email_brevo(to_email: str, otp: str):
url = "https://api.brevo.com/v3/smtp/email"
headers = {
"accept": "application/json",
"api-key": BREVO_API_KEY,
"content-type": "application/json",
}
data = {
"sender": {"name": "मनन", "email": "noreplymanan@gmail.com"},
"to": [{"email": to_email}],
"subject": "Your Manan OTP Code",
"htmlContent": f"""
<html>
<body>
<h2>Your OTP Code</h2>
<p>Your verification code is: <strong>{otp}</strong></p>
<p>This code will expire in 5 minutes.</p>
</body>
</html>
""",
}
response = requests.post(url, headers=headers, json=data)
if response.status_code not in [200, 201]:
raise HTTPException(status_code=500, detail=f"Email sending failed: {response.text}")
# -------------------------------
# Auth Endpoints
# -------------------------------
@app.get("/status")
def get_status():
try:
if supabase is None:
return {"status": "Supabase not configured", "supabase_data_retrieved": False}
response = supabase.table('users').select("id").limit(1).execute()
return {"status": "Connection successful", "supabase_data_retrieved": len(response.data) > 0}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Connection failed: {str(e)}")
@app.post("/send_otp")
def send_otp(req: OTPRequest):
try:
otp = str(random.randint(100000, 999999))
otp_store[req.email] = {"otp": otp, "timestamp": datetime.utcnow()}
logger.info(f"OTP generated for {req.email}")
# Send email
send_email_brevo(req.email, otp)
return {"message": f"OTP sent successfully to {req.email}"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error sending OTP: {str(e)}")
@app.post("/check_otp")
def check_otp(req: OTPVerifyRequest):
try:
if req.email not in otp_store:
raise HTTPException(status_code=404, detail="No OTP found for this email")
stored_data = otp_store[req.email]
stored_otp = stored_data["otp"]
timestamp = stored_data["timestamp"]
# Expiry check (5 minutes)
if datetime.utcnow() - timestamp > timedelta(minutes=5):
del otp_store[req.email]
raise HTTPException(status_code=400, detail="OTP expired")
if req.otp == stored_otp:
# Mark as verified instead of deleting
otp_store[req.email]["verified"] = True
otp_store[req.email]["otp"] = None
return {"verified": True}
else:
raise HTTPException(status_code=400, detail="Invalid OTP")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error verifying OTP: {str(e)}")
@app.post("/register_user")
def register_user(req: RegisterUserRequest):
try:
if supabase is None:
raise HTTPException(status_code=500, detail="Supabase not configured")
# Check OTP verification
if req.email not in otp_store or not otp_store[req.email].get("verified", False):
raise HTTPException(status_code=403, detail="Email not verified via OTP")
# Insert into Supabase
response = supabase.table("users").insert({
"name": req.name,
"email": req.email,
"password": req.password
}).execute()
# Cleanup
del otp_store[req.email]
return {"message": "User registered successfully", "data": response.data}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error registering user: {str(e)}")
@app.get("/get_profile/{email}")
def get_profile(email: str):
try:
if supabase is None:
raise HTTPException(status_code=500, detail="Supabase not configured")
response = supabase.table("users").select("*").eq("email", email).single().execute()
if not response.data:
raise HTTPException(status_code=404, detail="User not found")
# Remove password from response for security
profile_data = response.data.copy()
profile_data.pop('password', None)
return {"profile": profile_data}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error fetching profile: {str(e)}")
@app.put("/update_profile")
def update_profile(req: UpdateProfileRequest):
try:
if supabase is None:
raise HTTPException(status_code=500, detail="Supabase not configured")
update_data = {}
if req.name is not None:
update_data["name"] = req.name
if req.age is not None:
update_data["age"] = req.age
if req.phone is not None:
update_data["phone"] = req.phone
if not update_data:
raise HTTPException(status_code=400, detail="No data provided for update")
response = supabase.table("users").update(update_data).eq("email", req.email).execute()
if not response.data:
raise HTTPException(status_code=404, detail="User not found")
return {"message": "Profile updated successfully", "data": response.data}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error updating profile: {str(e)}")
@app.post("/update_profile_pic")
def update_profile_pic(req: UpdateProfilePicRequest):
try:
if supabase is None:
raise HTTPException(status_code=500, detail="Supabase not configured")
response = supabase.table("users").update({
"profilepic": req.profile_pic_url
}).eq("email", req.email).execute()
if not response.data:
raise HTTPException(status_code=404, detail="User not found")
return {"message": "Profile picture updated successfully", "data": response.data}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error updating profile picture: {str(e)}")
@app.get("/get_score/{email}")
def get_score(email: str):
try:
if supabase is None:
raise HTTPException(status_code=500, detail="Supabase not configured")
user_response = supabase.table("users").select("id").eq("email", email).execute()
if not user_response.data:
raise HTTPException(status_code=404, detail="User not found")
user_id = user_response.data[0]["id"]
predict_response = supabase.table("predict").select("prediction, timestamp") \
.eq("user_id", user_id).order("timestamp", desc=True).limit(1).execute()
if not predict_response.data:
raise HTTPException(status_code=404, detail="No predictions found for this user")
return predict_response.data[0]
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error fetching score: {str(e)}")
@app.post("/send_emotion")
def send_emotion(req: SendEmotionRequest):
try:
if supabase is None:
raise HTTPException(status_code=500, detail="Supabase not configured")
user_response = supabase.table("users").select("id").eq("email", req.email).execute()
if not user_response.data:
raise HTTPException(status_code=404, detail="User not found")
user_id = user_response.data[0]["id"]
data = {
"user_id": user_id,
"prediction": req.emotion,
"timestamp": datetime.utcnow().isoformat()
}
response = supabase.table("predict").insert(data).execute()
return {"message": "Emotion saved successfully", "data": response.data}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error saving emotion: {str(e)}")
@app.get("/get_emotion/{email}")
def get_emotion(email: str):
try:
if supabase is None:
raise HTTPException(status_code=500, detail="Supabase not configured")
user_response = supabase.table("users").select("id").eq("email", email).execute()
if not user_response.data:
raise HTTPException(status_code=404, detail="User not found")
user_id = user_response.data[0]["id"]
predict_response = supabase.table("predict").select("prediction") \
.eq("user_id", user_id).order("timestamp", desc=True).limit(1).execute()
if not predict_response.data:
return {"emotion": "Neutral"}
return {"emotion": predict_response.data[0]["prediction"]}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error fetching emotion: {str(e)}")
@app.get("/get_mental_health_details/{email}")
def get_mental_health_details(email: str):
try:
if supabase is None:
raise HTTPException(status_code=500, detail="Supabase not configured")
user_response = supabase.table("users").select("id").eq("email", email).execute()
if not user_response.data:
raise HTTPException(status_code=404, detail="User not found")
user_id = user_response.data[0]["id"]
# Get most recent prediction
recent_prediction = supabase.table("predict").select("prediction, timestamp") \
.eq("user_id", user_id).order("timestamp", desc=True).limit(1).execute()
current_prediction = recent_prediction.data[0]["prediction"] if recent_prediction.data else None
# Calculate this week's active days
week_ago = datetime.utcnow() - timedelta(days=7)
weekly_predictions = supabase.table("predict").select("timestamp") \
.eq("user_id", user_id).gte("timestamp", week_ago.isoformat()).execute()
if weekly_predictions.data:
dates = set()
for p in weekly_predictions.data:
if p.get("timestamp"):
try:
ts_str = p["timestamp"].replace('Z', '+00:00')
dt = datetime.fromisoformat(ts_str)
dates.add(dt.date())
except (ValueError, AttributeError):
try:
ts_str = p["timestamp"].split('+')[0].split('Z')[0]
dt = datetime.strptime(ts_str, '%Y-%m-%dT%H:%M:%S.%f')
dates.add(dt.date())
except:
try:
dt = datetime.strptime(ts_str, '%Y-%m-%dT%H:%M:%S')
dates.add(dt.date())
except:
pass
active_days = len(dates)
else:
active_days = 0
# Total conversations
total_conversations = supabase.table("predict").select("*", count="exact") \
.eq("user_id", user_id).execute()
total_count = total_conversations.count if total_conversations else 0
return {
"current_prediction": current_prediction,
"active_days_this_week": active_days,
"total_conversations": total_count
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error fetching mental health details: {str(e)}")
# =============================================================================
# DAILY EMOTION SCORE CALCULATION
# =============================================================================
# Valence Mapping for emotions
EMO_VALENCE = {
"Angry": -0.80,
"Disgust": -0.60,
"Fear": -0.70,
"Happy": 0.90,
"Sad": -0.90,
"Surprise": 0.20,
"Neutral": 0.0,
# text emotions
"sadness": -0.90,
"joy": 0.90,
"love": 0.80,
"anger": -0.80,
"fear": -0.70,
"surprise": 0.20
}
def valence_from_probabilities(probabilities: Dict[str, float]) -> float:
if not probabilities:
return 0.0
v = 0.0
total = sum(probabilities.values()) or 1.0
for emo, p in probabilities.items():
key = emo if emo in EMO_VALENCE else emo.capitalize()
v += p * EMO_VALENCE.get(key, 0.0)
return v / total
def valence_to_score(v: float) -> float:
return (v + 1) / 2 * 100 # [-1..1] → [0..100]
class EmotionItem(BaseModel):
emotion: str
probabilities: Optional[Dict[str, float]] = None
confidence: Optional[float] = 1.0
class ScoreRequest(BaseModel):
face_results: Optional[List[EmotionItem]] = []
audio_results: Optional[List[EmotionItem]] = []
text_results: Optional[List[EmotionItem]] = []
@app.post("/calculate_day_score")
def calculate_day_score(payload: ScoreRequest):
"""Calculate weighted day score from face, audio, and text emotions."""
source_weights = {
"face": 0.4,
"audio": 0.35,
"text": 0.25
}
accum_num = 0.0
accum_den = 0.0
breakdown = {"face": [], "audio": [], "text": []}
# FACE
for item in payload.face_results:
v = valence_from_probabilities(item.probabilities) \
if item.probabilities else EMO_VALENCE.get(item.emotion, 0.0)
score = valence_to_score(v)
w = source_weights["face"] * (item.confidence or 1.0)
accum_num += score * w
accum_den += w
breakdown["face"].append({
"emotion": item.emotion,
"valence": v,
"score": score,
"weight": w
})
# AUDIO
for item in payload.audio_results:
v = valence_from_probabilities(item.probabilities) \
if item.probabilities else EMO_VALENCE.get(item.emotion, 0.0)
score = valence_to_score(v)
w = source_weights["audio"] * (item.confidence or 1.0)
accum_num += score * w
accum_den += w
breakdown["audio"].append({
"emotion": item.emotion,
"confidence": item.confidence,
"valence": v,
"score": score,
"weight": w
})
# TEXT
for item in payload.text_results:
v = valence_from_probabilities(item.probabilities) \
if item.probabilities else EMO_VALENCE.get(item.emotion.lower(), 0.0)
score = valence_to_score(v)
w = source_weights["text"] * (item.confidence or 1.0)
accum_num += score * w
accum_den += w
breakdown["text"].append({
"emotion": item.emotion,
"confidence": item.confidence,
"valence": v,
"score": score,
"weight": w
})
final_score = accum_num / accum_den if accum_den > 0 else None
return {
"day_score": final_score,
"breakdown": breakdown,
"numerator": accum_num,
"denominator": accum_den
}