Spaces:
Running
Running
CodeGovindz
commited on
Commit
·
6deff13
0
Parent(s):
Initial commit: Manan ML API for emotion detection
Browse files- Dockerfile +40 -0
- README.md +62 -0
- app.py +559 -0
- requirements.txt +17 -0
Dockerfile
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# Set working directory
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
# Install system dependencies
|
| 7 |
+
RUN apt-get update && apt-get install -y \
|
| 8 |
+
libgl1-mesa-glx \
|
| 9 |
+
libglib2.0-0 \
|
| 10 |
+
libsm6 \
|
| 11 |
+
libxext6 \
|
| 12 |
+
libxrender-dev \
|
| 13 |
+
libgomp1 \
|
| 14 |
+
ffmpeg \
|
| 15 |
+
git \
|
| 16 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 17 |
+
|
| 18 |
+
# Copy requirements first for caching
|
| 19 |
+
COPY requirements.txt .
|
| 20 |
+
|
| 21 |
+
# Install Python dependencies
|
| 22 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 23 |
+
pip install --no-cache-dir -r requirements.txt
|
| 24 |
+
|
| 25 |
+
# Copy application code
|
| 26 |
+
COPY . .
|
| 27 |
+
|
| 28 |
+
# Create directory for models
|
| 29 |
+
RUN mkdir -p /app/pretrained_models
|
| 30 |
+
|
| 31 |
+
# Expose port (Hugging Face uses 7860)
|
| 32 |
+
EXPOSE 7860
|
| 33 |
+
|
| 34 |
+
# Set environment variables
|
| 35 |
+
ENV PYTHONUNBUFFERED=1
|
| 36 |
+
ENV TRANSFORMERS_CACHE=/app/.cache
|
| 37 |
+
ENV HF_HOME=/app/.cache
|
| 38 |
+
|
| 39 |
+
# Run the application
|
| 40 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Manan ML API
|
| 3 |
+
emoji: 🧠
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: docker
|
| 7 |
+
pinned: false
|
| 8 |
+
license: mit
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Manan ML API - Mental Health Emotion Recognition
|
| 12 |
+
|
| 13 |
+
This is the ML backend for the **Manan (मनन)** mental health analysis app.
|
| 14 |
+
|
| 15 |
+
## Features
|
| 16 |
+
|
| 17 |
+
- **Face Emotion Recognition**: Using DeepFace to detect 7 emotions (Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral)
|
| 18 |
+
- **Voice Emotion Recognition**: Using SpeechBrain's Wav2Vec2-IEMOCAP model
|
| 19 |
+
- **Text Emotion Recognition**: Using Whisper for transcription + DistilBERT for emotion classification
|
| 20 |
+
|
| 21 |
+
## API Endpoints
|
| 22 |
+
|
| 23 |
+
### Health Check
|
| 24 |
+
```
|
| 25 |
+
GET /
|
| 26 |
+
GET /health
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
### Face Emotion Prediction
|
| 30 |
+
```
|
| 31 |
+
POST /pred_face
|
| 32 |
+
- files: List of image files
|
| 33 |
+
- questions: JSON string with question metadata
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
### Voice Emotion Prediction
|
| 37 |
+
```
|
| 38 |
+
POST /predict_audio_batch
|
| 39 |
+
- files: List of audio files (WAV format)
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
### Text Emotion Prediction
|
| 43 |
+
```
|
| 44 |
+
POST /predict_text/
|
| 45 |
+
- files: List of audio files (WAV format)
|
| 46 |
+
- Returns: transcript + emotion
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## Models Used
|
| 50 |
+
|
| 51 |
+
1. **DeepFace** - Facial emotion recognition
|
| 52 |
+
2. **OpenAI Whisper (base)** - Speech-to-text
|
| 53 |
+
3. **SpeechBrain Wav2Vec2-IEMOCAP** - Voice emotion recognition
|
| 54 |
+
4. **DistilBERT** - Text emotion classification
|
| 55 |
+
|
| 56 |
+
## Usage
|
| 57 |
+
|
| 58 |
+
The API is designed to be used with the Manan Flutter mobile app for multimodal emotion analysis.
|
| 59 |
+
|
| 60 |
+
## License
|
| 61 |
+
|
| 62 |
+
MIT License
|
app.py
ADDED
|
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tempfile
|
| 3 |
+
import logging
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import whisper
|
| 8 |
+
import librosa
|
| 9 |
+
import asyncio
|
| 10 |
+
from typing import List, Dict, Any, Optional
|
| 11 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException, Request, Form
|
| 12 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 13 |
+
from fastapi.responses import JSONResponse
|
| 14 |
+
from PIL import Image
|
| 15 |
+
from torchvision import transforms
|
| 16 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
| 17 |
+
from speechbrain.inference.classifiers import EncoderClassifier
|
| 18 |
+
import torchaudio
|
| 19 |
+
import json
|
| 20 |
+
|
| 21 |
+
# Setup logging
|
| 22 |
+
logging.basicConfig(
|
| 23 |
+
level=logging.INFO,
|
| 24 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
| 25 |
+
)
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
+
|
| 28 |
+
class ModelManager:
|
| 29 |
+
"""Centralized model management for all ML models."""
|
| 30 |
+
|
| 31 |
+
_instance = None
|
| 32 |
+
|
| 33 |
+
def __new__(cls):
|
| 34 |
+
if cls._instance is None:
|
| 35 |
+
cls._instance = super(ModelManager, cls).__new__(cls)
|
| 36 |
+
cls._instance._initialized = False
|
| 37 |
+
return cls._instance
|
| 38 |
+
|
| 39 |
+
def __init__(self):
|
| 40 |
+
if self._initialized:
|
| 41 |
+
return
|
| 42 |
+
|
| 43 |
+
self._initialized = True
|
| 44 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
+
logger.info(f"Using device: {self.device}")
|
| 46 |
+
|
| 47 |
+
self.emotion_model = None
|
| 48 |
+
self.whisper_model = None
|
| 49 |
+
self.text_tokenizer = None
|
| 50 |
+
self.text_model = None
|
| 51 |
+
self.speechbrain_model = None
|
| 52 |
+
|
| 53 |
+
# Model paths
|
| 54 |
+
self.MODEL_PATHS = {
|
| 55 |
+
'whisper_model': 'base',
|
| 56 |
+
'text_model': 'emotion-distilbert-model',
|
| 57 |
+
'speechbrain_model': 'speechbrain/emotion-recognition-wav2vec2-IEMOCAP'
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
# Constants
|
| 61 |
+
self.EMOTIONS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
| 62 |
+
self.SAMPLE_RATE = 16000
|
| 63 |
+
self.TEXT_EMOTIONS = ["sadness", "joy", "love", "anger", "fear", "surprise"]
|
| 64 |
+
|
| 65 |
+
# SpeechBrain emotion mapping
|
| 66 |
+
self.SPEECHBRAIN_EMOTION_MAP = {
|
| 67 |
+
'neu': 'Neutral',
|
| 68 |
+
'hap': 'Happy',
|
| 69 |
+
'sad': 'Sad',
|
| 70 |
+
'ang': 'Angry',
|
| 71 |
+
'fea': 'Fear',
|
| 72 |
+
'dis': 'Disgust',
|
| 73 |
+
'sur': 'Surprise'
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
def load_all_models(self):
|
| 77 |
+
"""Load all required models."""
|
| 78 |
+
try:
|
| 79 |
+
logger.info("Starting to load all models...")
|
| 80 |
+
self._load_emotion_model()
|
| 81 |
+
self._load_whisper_model()
|
| 82 |
+
self._load_text_models()
|
| 83 |
+
self._load_speechbrain_model()
|
| 84 |
+
logger.info("All models loaded successfully!")
|
| 85 |
+
return True
|
| 86 |
+
except Exception as e:
|
| 87 |
+
logger.error(f"Error loading models: {str(e)}")
|
| 88 |
+
raise
|
| 89 |
+
|
| 90 |
+
def _load_emotion_model(self):
|
| 91 |
+
"""Use DeepFace for emotion recognition."""
|
| 92 |
+
try:
|
| 93 |
+
logger.info("Loading DeepFace for emotion recognition...")
|
| 94 |
+
from deepface import DeepFace
|
| 95 |
+
self.emotion_model = DeepFace
|
| 96 |
+
logger.info("DeepFace loaded successfully")
|
| 97 |
+
except Exception as e:
|
| 98 |
+
logger.error(f"Failed to initialize DeepFace: {str(e)}")
|
| 99 |
+
raise
|
| 100 |
+
|
| 101 |
+
def _load_whisper_model(self):
|
| 102 |
+
"""Load the Whisper speech-to-text model."""
|
| 103 |
+
try:
|
| 104 |
+
logger.info("Loading Whisper model...")
|
| 105 |
+
self.whisper_model = whisper.load_model(self.MODEL_PATHS['whisper_model'])
|
| 106 |
+
logger.info("Whisper model loaded successfully")
|
| 107 |
+
except Exception as e:
|
| 108 |
+
logger.error(f"Failed to load Whisper model: {str(e)}")
|
| 109 |
+
raise
|
| 110 |
+
|
| 111 |
+
def _load_text_models(self):
|
| 112 |
+
"""Load the text emotion classification model and tokenizer."""
|
| 113 |
+
try:
|
| 114 |
+
logger.info("Loading text emotion model...")
|
| 115 |
+
model_path = self.MODEL_PATHS['text_model']
|
| 116 |
+
|
| 117 |
+
# Try to load from local path first, then from HuggingFace Hub
|
| 118 |
+
if os.path.exists(model_path):
|
| 119 |
+
self.text_tokenizer = DistilBertTokenizerFast.from_pretrained(model_path)
|
| 120 |
+
self.text_model = DistilBertForSequenceClassification.from_pretrained(model_path)
|
| 121 |
+
else:
|
| 122 |
+
# Use a public emotion model from HuggingFace
|
| 123 |
+
logger.info("Local model not found, using HuggingFace model...")
|
| 124 |
+
self.text_tokenizer = DistilBertTokenizerFast.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
| 125 |
+
self.text_model = DistilBertForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
| 126 |
+
|
| 127 |
+
self.text_model.eval()
|
| 128 |
+
logger.info("Text models loaded successfully")
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
logger.error(f"Failed to load text models: {str(e)}")
|
| 132 |
+
raise
|
| 133 |
+
|
| 134 |
+
def _load_speechbrain_model(self):
|
| 135 |
+
"""Load SpeechBrain emotion recognition model."""
|
| 136 |
+
try:
|
| 137 |
+
logger.info("Loading SpeechBrain emotion recognition model...")
|
| 138 |
+
self.speechbrain_model = EncoderClassifier.from_hparams(
|
| 139 |
+
source=self.MODEL_PATHS['speechbrain_model'],
|
| 140 |
+
savedir="pretrained_models/emotion-recognition-wav2vec2-IEMOCAP",
|
| 141 |
+
run_opts={"device": "cpu"}
|
| 142 |
+
)
|
| 143 |
+
logger.info("SpeechBrain emotion recognition model loaded successfully")
|
| 144 |
+
except Exception as e:
|
| 145 |
+
logger.error(f"Failed to load SpeechBrain model: {str(e)}")
|
| 146 |
+
raise
|
| 147 |
+
|
| 148 |
+
def get_emotion_model(self):
|
| 149 |
+
if self.emotion_model is None:
|
| 150 |
+
self._load_emotion_model()
|
| 151 |
+
return self.emotion_model
|
| 152 |
+
|
| 153 |
+
def get_whisper_model(self):
|
| 154 |
+
if self.whisper_model is None:
|
| 155 |
+
self._load_whisper_model()
|
| 156 |
+
return self.whisper_model
|
| 157 |
+
|
| 158 |
+
def get_text_models(self):
|
| 159 |
+
if self.text_model is None or self.text_tokenizer is None:
|
| 160 |
+
self._load_text_models()
|
| 161 |
+
return self.text_tokenizer, self.text_model
|
| 162 |
+
|
| 163 |
+
def get_speechbrain_model(self):
|
| 164 |
+
if self.speechbrain_model is None:
|
| 165 |
+
self._load_speechbrain_model()
|
| 166 |
+
return self.speechbrain_model
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
# Initialize FastAPI app
|
| 170 |
+
app = FastAPI(title="Manan ML API - Emotion Recognition")
|
| 171 |
+
|
| 172 |
+
# CORS middleware
|
| 173 |
+
app.add_middleware(
|
| 174 |
+
CORSMiddleware,
|
| 175 |
+
allow_origins=["*"],
|
| 176 |
+
allow_credentials=True,
|
| 177 |
+
allow_methods=["*"],
|
| 178 |
+
allow_headers=["*"],
|
| 179 |
+
expose_headers=["*"]
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# Initialize model manager
|
| 183 |
+
model_manager = ModelManager()
|
| 184 |
+
|
| 185 |
+
# Image transformation pipeline
|
| 186 |
+
transform = transforms.Compose([
|
| 187 |
+
transforms.Resize((224, 224)),
|
| 188 |
+
transforms.ToTensor(),
|
| 189 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 190 |
+
])
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
@app.on_event("startup")
|
| 194 |
+
async def startup_event():
|
| 195 |
+
"""Initialize all models when the application starts."""
|
| 196 |
+
try:
|
| 197 |
+
logger.info("Starting model initialization...")
|
| 198 |
+
model_manager.load_all_models()
|
| 199 |
+
logger.info("All models initialized successfully!")
|
| 200 |
+
except Exception as e:
|
| 201 |
+
logger.error(f"Failed to initialize models: {str(e)}")
|
| 202 |
+
# Don't raise - let the app start and load models on demand
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
@app.get("/")
|
| 206 |
+
async def root():
|
| 207 |
+
"""Health check endpoint."""
|
| 208 |
+
return {
|
| 209 |
+
"status": "running",
|
| 210 |
+
"message": "Manan ML API is running!",
|
| 211 |
+
"endpoints": [
|
| 212 |
+
"/pred_face - Face emotion prediction",
|
| 213 |
+
"/predict_audio_batch - Voice emotion prediction",
|
| 214 |
+
"/predict_text/ - Text emotion prediction"
|
| 215 |
+
]
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
@app.get("/health")
|
| 220 |
+
async def health_check():
|
| 221 |
+
"""Health check endpoint."""
|
| 222 |
+
return {"status": "healthy", "device": str(model_manager.device)}
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# Helper function for SpeechBrain prediction
|
| 226 |
+
def predict_emotion_speechbrain(audio_path: str) -> Dict[str, Any]:
|
| 227 |
+
"""Predict emotion from audio using SpeechBrain."""
|
| 228 |
+
try:
|
| 229 |
+
speechbrain_model = model_manager.get_speechbrain_model()
|
| 230 |
+
|
| 231 |
+
signal, sr = torchaudio.load(audio_path)
|
| 232 |
+
|
| 233 |
+
if sr != 16000:
|
| 234 |
+
resampler = torchaudio.transforms.Resample(sr, 16000)
|
| 235 |
+
signal = resampler(signal)
|
| 236 |
+
|
| 237 |
+
if signal.dim() == 1:
|
| 238 |
+
signal = signal.unsqueeze(0)
|
| 239 |
+
elif signal.dim() == 3:
|
| 240 |
+
signal = signal.squeeze(1)
|
| 241 |
+
|
| 242 |
+
device = next(speechbrain_model.mods.wav2vec2.parameters()).device
|
| 243 |
+
signal = signal.to(device)
|
| 244 |
+
|
| 245 |
+
with torch.no_grad():
|
| 246 |
+
feats = speechbrain_model.mods.wav2vec2(signal)
|
| 247 |
+
pooled = speechbrain_model.mods.avg_pool(feats)
|
| 248 |
+
out = speechbrain_model.mods.output_mlp(pooled)
|
| 249 |
+
out_prob = speechbrain_model.hparams.softmax(out)
|
| 250 |
+
|
| 251 |
+
score, index = torch.max(out_prob, dim=-1)
|
| 252 |
+
predicted_emotion = speechbrain_model.hparams.label_encoder.decode_ndim(index.cpu())
|
| 253 |
+
|
| 254 |
+
if isinstance(predicted_emotion, list):
|
| 255 |
+
if isinstance(predicted_emotion[0], list):
|
| 256 |
+
emotion_key = str(predicted_emotion[0][0]).lower()[:3]
|
| 257 |
+
else:
|
| 258 |
+
emotion_key = str(predicted_emotion[0]).lower()[:3]
|
| 259 |
+
else:
|
| 260 |
+
emotion_key = str(predicted_emotion).lower()[:3]
|
| 261 |
+
|
| 262 |
+
emotion = model_manager.SPEECHBRAIN_EMOTION_MAP.get(emotion_key, 'Neutral')
|
| 263 |
+
probs = out_prob[0].detach().cpu().numpy()
|
| 264 |
+
|
| 265 |
+
if probs.ndim > 1:
|
| 266 |
+
probs = probs.flatten()
|
| 267 |
+
|
| 268 |
+
all_emotions = speechbrain_model.hparams.label_encoder.decode_ndim(
|
| 269 |
+
torch.arange(len(probs))
|
| 270 |
+
)
|
| 271 |
+
prob_dict = {}
|
| 272 |
+
for i in range(len(probs)):
|
| 273 |
+
if i < len(all_emotions):
|
| 274 |
+
if isinstance(all_emotions[i], list):
|
| 275 |
+
key = str(all_emotions[i][0]).lower()[:3]
|
| 276 |
+
else:
|
| 277 |
+
key = str(all_emotions[i]).lower()[:3]
|
| 278 |
+
emotion_name = model_manager.SPEECHBRAIN_EMOTION_MAP.get(key, f'emotion_{i}')
|
| 279 |
+
prob_dict[emotion_name] = float(probs[i])
|
| 280 |
+
|
| 281 |
+
confidence = float(score[0])
|
| 282 |
+
|
| 283 |
+
return {
|
| 284 |
+
'emotion': emotion,
|
| 285 |
+
'confidence': confidence,
|
| 286 |
+
'probabilities': prob_dict
|
| 287 |
+
}
|
| 288 |
+
|
| 289 |
+
except Exception as e:
|
| 290 |
+
logger.error(f"Error predicting emotion with SpeechBrain: {str(e)}")
|
| 291 |
+
raise
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def transcribe_audio(audio_path: str) -> str:
|
| 295 |
+
"""Transcribe audio to text using Whisper."""
|
| 296 |
+
try:
|
| 297 |
+
result = model_manager.whisper_model.transcribe(audio_path)
|
| 298 |
+
return result["text"].strip()
|
| 299 |
+
except Exception as e:
|
| 300 |
+
logger.error(f"Error in audio transcription: {str(e)}")
|
| 301 |
+
return ""
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
# ============== API ENDPOINTS ==============
|
| 305 |
+
|
| 306 |
+
@app.post("/pred_face")
|
| 307 |
+
async def predict_face_emotion(
|
| 308 |
+
files: List[UploadFile] = File(...),
|
| 309 |
+
questions: str = Form(None)
|
| 310 |
+
):
|
| 311 |
+
"""Predict emotions from face images using DeepFace."""
|
| 312 |
+
from deepface import DeepFace
|
| 313 |
+
|
| 314 |
+
logger.info(f"Received {len(files)} files for face prediction")
|
| 315 |
+
if not files:
|
| 316 |
+
raise HTTPException(status_code=400, detail="No files provided")
|
| 317 |
+
|
| 318 |
+
temp_files = []
|
| 319 |
+
|
| 320 |
+
try:
|
| 321 |
+
questions_data = {}
|
| 322 |
+
question_count = 0
|
| 323 |
+
|
| 324 |
+
if questions:
|
| 325 |
+
try:
|
| 326 |
+
questions_data = json.loads(questions)
|
| 327 |
+
question_count = len(questions_data)
|
| 328 |
+
except json.JSONDecodeError:
|
| 329 |
+
raise HTTPException(status_code=400, detail="Invalid questions JSON format.")
|
| 330 |
+
else:
|
| 331 |
+
question_count = 3
|
| 332 |
+
questions_data = {str(i): {"text": f"Question {i+1}", "imageCount": 1} for i in range(question_count)}
|
| 333 |
+
|
| 334 |
+
question_files = {str(i): [] for i in range(question_count)}
|
| 335 |
+
for file in files:
|
| 336 |
+
if '_' in file.filename and file.filename.startswith('q'):
|
| 337 |
+
try:
|
| 338 |
+
q_idx = file.filename.split('_')[0][1:]
|
| 339 |
+
if q_idx in question_files:
|
| 340 |
+
question_files[q_idx].append(file)
|
| 341 |
+
except Exception as e:
|
| 342 |
+
logger.warning(f"Skipping file {file.filename}: {e}")
|
| 343 |
+
|
| 344 |
+
results = []
|
| 345 |
+
|
| 346 |
+
for q_idx, q_files in question_files.items():
|
| 347 |
+
if not q_files:
|
| 348 |
+
results.append({
|
| 349 |
+
"emotion": "Unknown",
|
| 350 |
+
"probabilities": {e: 0.0 for e in model_manager.EMOTIONS}
|
| 351 |
+
})
|
| 352 |
+
continue
|
| 353 |
+
|
| 354 |
+
probs_list = []
|
| 355 |
+
|
| 356 |
+
for file in q_files:
|
| 357 |
+
try:
|
| 358 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
| 359 |
+
content = await file.read()
|
| 360 |
+
tmp.write(content)
|
| 361 |
+
temp_path = tmp.name
|
| 362 |
+
temp_files.append(temp_path)
|
| 363 |
+
|
| 364 |
+
analysis = DeepFace.analyze(
|
| 365 |
+
img_path=temp_path,
|
| 366 |
+
actions=['emotion'],
|
| 367 |
+
enforce_detection=False,
|
| 368 |
+
silent=True
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
if isinstance(analysis, list):
|
| 372 |
+
analysis = analysis[0]
|
| 373 |
+
|
| 374 |
+
emotion_scores = analysis.get('emotion', {})
|
| 375 |
+
dominant_emotion = analysis.get('dominant_emotion', 'neutral')
|
| 376 |
+
|
| 377 |
+
normalized_probs = {}
|
| 378 |
+
for emo in model_manager.EMOTIONS:
|
| 379 |
+
key = emo.lower()
|
| 380 |
+
normalized_probs[emo] = emotion_scores.get(key, 0.0) / 100.0
|
| 381 |
+
|
| 382 |
+
probs_list.append(normalized_probs)
|
| 383 |
+
|
| 384 |
+
except Exception as e:
|
| 385 |
+
logger.error(f"Error processing {file.filename}: {e}")
|
| 386 |
+
|
| 387 |
+
if probs_list:
|
| 388 |
+
avg_probs = {}
|
| 389 |
+
for emo in model_manager.EMOTIONS:
|
| 390 |
+
avg_probs[emo] = sum(p.get(emo, 0) for p in probs_list) / len(probs_list)
|
| 391 |
+
|
| 392 |
+
dominant_emotion = max(avg_probs, key=avg_probs.get)
|
| 393 |
+
results.append({
|
| 394 |
+
"emotion": dominant_emotion,
|
| 395 |
+
"probabilities": avg_probs
|
| 396 |
+
})
|
| 397 |
+
else:
|
| 398 |
+
results.append({
|
| 399 |
+
"emotion": "Unknown",
|
| 400 |
+
"probabilities": {e: 0.0 for e in model_manager.EMOTIONS}
|
| 401 |
+
})
|
| 402 |
+
|
| 403 |
+
return results
|
| 404 |
+
|
| 405 |
+
except Exception as e:
|
| 406 |
+
logger.error(f"Error in face emotion prediction: {str(e)}")
|
| 407 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 408 |
+
|
| 409 |
+
finally:
|
| 410 |
+
for file_path in temp_files:
|
| 411 |
+
try:
|
| 412 |
+
if os.path.exists(file_path):
|
| 413 |
+
os.remove(file_path)
|
| 414 |
+
except Exception as e:
|
| 415 |
+
logger.warning(f"Failed to delete temp file {file_path}: {e}")
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
@app.post("/predict_audio_batch")
|
| 419 |
+
async def predict_audio_batch(files: List[UploadFile] = File(...)):
|
| 420 |
+
"""Predict emotions from multiple audio files using SpeechBrain."""
|
| 421 |
+
logger.info(f"Received {len(files)} audio files for prediction")
|
| 422 |
+
|
| 423 |
+
if not files:
|
| 424 |
+
raise HTTPException(status_code=400, detail="No audio files provided")
|
| 425 |
+
|
| 426 |
+
temp_files = []
|
| 427 |
+
results = []
|
| 428 |
+
|
| 429 |
+
try:
|
| 430 |
+
for file in files:
|
| 431 |
+
try:
|
| 432 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
| 433 |
+
content = await file.read()
|
| 434 |
+
tmp.write(content)
|
| 435 |
+
temp_path = tmp.name
|
| 436 |
+
temp_files.append(temp_path)
|
| 437 |
+
|
| 438 |
+
prediction = predict_emotion_speechbrain(temp_path)
|
| 439 |
+
results.append(prediction)
|
| 440 |
+
logger.info(f"Predicted emotion for {file.filename}: {prediction['emotion']}")
|
| 441 |
+
|
| 442 |
+
except Exception as e:
|
| 443 |
+
logger.error(f"Error processing {file.filename}: {e}")
|
| 444 |
+
results.append({
|
| 445 |
+
'emotion': 'Unknown',
|
| 446 |
+
'confidence': 0.0,
|
| 447 |
+
'probabilities': {},
|
| 448 |
+
'error': str(e)
|
| 449 |
+
})
|
| 450 |
+
|
| 451 |
+
return {'status': 'success', 'results': results}
|
| 452 |
+
|
| 453 |
+
except Exception as e:
|
| 454 |
+
logger.error(f"Error in audio batch prediction: {str(e)}")
|
| 455 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 456 |
+
|
| 457 |
+
finally:
|
| 458 |
+
for file_path in temp_files:
|
| 459 |
+
try:
|
| 460 |
+
if os.path.exists(file_path):
|
| 461 |
+
os.remove(file_path)
|
| 462 |
+
except Exception as e:
|
| 463 |
+
logger.warning(f"Failed to delete temp file {file_path}: {e}")
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
@app.post("/predict_text/")
|
| 467 |
+
async def predict_text_emotion(files: List[UploadFile] = File(...)):
|
| 468 |
+
"""Transcribe audio and predict text emotion."""
|
| 469 |
+
logger.info(f"Received {len(files)} audio files for text prediction")
|
| 470 |
+
|
| 471 |
+
if not files:
|
| 472 |
+
raise HTTPException(status_code=400, detail="No audio files provided")
|
| 473 |
+
|
| 474 |
+
temp_files = []
|
| 475 |
+
results = []
|
| 476 |
+
|
| 477 |
+
try:
|
| 478 |
+
tokenizer, text_model = model_manager.get_text_models()
|
| 479 |
+
whisper_model = model_manager.get_whisper_model()
|
| 480 |
+
|
| 481 |
+
for file in files:
|
| 482 |
+
try:
|
| 483 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
| 484 |
+
content = await file.read()
|
| 485 |
+
tmp.write(content)
|
| 486 |
+
temp_path = tmp.name
|
| 487 |
+
temp_files.append(temp_path)
|
| 488 |
+
|
| 489 |
+
# Transcribe
|
| 490 |
+
transcription = whisper_model.transcribe(temp_path)
|
| 491 |
+
transcript = transcription["text"].strip()
|
| 492 |
+
logger.info(f"Transcribed: {transcript}")
|
| 493 |
+
|
| 494 |
+
if not transcript:
|
| 495 |
+
results.append({
|
| 496 |
+
'transcript': '',
|
| 497 |
+
'emotion': 'neutral',
|
| 498 |
+
'confidence': 0.0,
|
| 499 |
+
'probabilities': {}
|
| 500 |
+
})
|
| 501 |
+
continue
|
| 502 |
+
|
| 503 |
+
# Predict emotion from text
|
| 504 |
+
inputs = tokenizer(
|
| 505 |
+
transcript,
|
| 506 |
+
return_tensors="pt",
|
| 507 |
+
truncation=True,
|
| 508 |
+
max_length=128,
|
| 509 |
+
padding=True
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
with torch.no_grad():
|
| 513 |
+
outputs = text_model(**inputs)
|
| 514 |
+
probs = torch.softmax(outputs.logits, dim=1)[0]
|
| 515 |
+
|
| 516 |
+
# Get emotion labels
|
| 517 |
+
emotion_labels = model_manager.TEXT_EMOTIONS
|
| 518 |
+
if hasattr(text_model.config, 'id2label'):
|
| 519 |
+
emotion_labels = [text_model.config.id2label[i] for i in range(len(probs))]
|
| 520 |
+
|
| 521 |
+
prob_dict = {emotion_labels[i]: float(probs[i]) for i in range(len(probs))}
|
| 522 |
+
predicted_idx = torch.argmax(probs).item()
|
| 523 |
+
predicted_emotion = emotion_labels[predicted_idx]
|
| 524 |
+
confidence = float(probs[predicted_idx])
|
| 525 |
+
|
| 526 |
+
results.append({
|
| 527 |
+
'transcript': transcript,
|
| 528 |
+
'emotion': predicted_emotion,
|
| 529 |
+
'confidence': confidence,
|
| 530 |
+
'probabilities': prob_dict
|
| 531 |
+
})
|
| 532 |
+
|
| 533 |
+
except Exception as e:
|
| 534 |
+
logger.error(f"Error processing {file.filename}: {e}")
|
| 535 |
+
results.append({
|
| 536 |
+
'transcript': '',
|
| 537 |
+
'emotion': 'unknown',
|
| 538 |
+
'confidence': 0.0,
|
| 539 |
+
'error': str(e)
|
| 540 |
+
})
|
| 541 |
+
|
| 542 |
+
return results
|
| 543 |
+
|
| 544 |
+
except Exception as e:
|
| 545 |
+
logger.error(f"Error in text prediction: {str(e)}")
|
| 546 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 547 |
+
|
| 548 |
+
finally:
|
| 549 |
+
for file_path in temp_files:
|
| 550 |
+
try:
|
| 551 |
+
if os.path.exists(file_path):
|
| 552 |
+
os.remove(file_path)
|
| 553 |
+
except Exception as e:
|
| 554 |
+
logger.warning(f"Failed to delete temp file {file_path}: {e}")
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
if __name__ == "__main__":
|
| 558 |
+
import uvicorn
|
| 559 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.115.0
|
| 2 |
+
uvicorn==0.30.0
|
| 3 |
+
python-multipart==0.0.9
|
| 4 |
+
numpy==1.26.4
|
| 5 |
+
torch==2.2.0
|
| 6 |
+
torchvision==0.17.0
|
| 7 |
+
torchaudio==2.2.0
|
| 8 |
+
openai-whisper==20240930
|
| 9 |
+
transformers==4.44.0
|
| 10 |
+
librosa==0.10.2
|
| 11 |
+
pillow==10.4.0
|
| 12 |
+
deepface==0.0.92
|
| 13 |
+
soundfile==0.12.1
|
| 14 |
+
audioread==3.0.1
|
| 15 |
+
speechbrain==1.0.0
|
| 16 |
+
pydantic==2.8.0
|
| 17 |
+
python-dotenv==1.0.1
|