Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
| 5 |
colorFrom: indigo
|
| 6 |
colorTo: indigo
|
| 7 |
sdk: gradio
|
| 8 |
-
sdk_version:
|
| 9 |
app_file: run.py
|
| 10 |
pinned: false
|
| 11 |
hf_oauth: true
|
|
|
|
| 5 |
colorFrom: indigo
|
| 6 |
colorTo: indigo
|
| 7 |
sdk: gradio
|
| 8 |
+
sdk_version: 6.0.0
|
| 9 |
app_file: run.py
|
| 10 |
pinned: false
|
| 11 |
hf_oauth: true
|
run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(stream, new_chunk):\n", " sr, y = new_chunk\n", " \n", " # Convert to mono if stereo\n", " if y.ndim > 1:\n", " y = y.mean(axis=1)\n", " \n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " if stream is not None:\n", " stream = np.concatenate([stream, y])\n", " else:\n", " stream = y\n", " return stream, transcriber({\"sampling_rate\": sr, \"raw\": stream})[\"text\"] # type: ignore\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " [\"state\", gr.Audio(sources=[\"microphone\"], streaming=True)],\n", " [\"state\", \"text\"],\n", " live=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(stream, new_chunk):\n", " sr, y = new_chunk\n", " \n", " # Convert to mono if stereo\n", " if y.ndim > 1:\n", " y = y.mean(axis=1)\n", " \n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " if stream is not None:\n", " stream = np.concatenate([stream, y])\n", " else:\n", " stream = y\n", " return stream, transcriber({\"sampling_rate\": sr, \"raw\": stream})[\"text\"] # type: ignore\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " [\"state\", gr.Audio(sources=[\"microphone\"], streaming=True)],\n", " [\"state\", \"text\"],\n", " live=True,\n", " api_name=\"predict\"\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
|
@@ -25,6 +25,7 @@ demo = gr.Interface(
|
|
| 25 |
["state", gr.Audio(sources=["microphone"], streaming=True)],
|
| 26 |
["state", "text"],
|
| 27 |
live=True,
|
|
|
|
| 28 |
)
|
| 29 |
|
| 30 |
if __name__ == "__main__":
|
|
|
|
| 25 |
["state", gr.Audio(sources=["microphone"], streaming=True)],
|
| 26 |
["state", "text"],
|
| 27 |
live=True,
|
| 28 |
+
api_name="predict"
|
| 29 |
)
|
| 30 |
|
| 31 |
if __name__ == "__main__":
|