Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,8 +8,21 @@ from langchain.document_loaders import PyPDFLoader, UnstructuredFileLoader, CSVL
|
|
| 8 |
from langchain.chains import RetrievalQA
|
| 9 |
from langchain.prompts import PromptTemplate
|
| 10 |
|
| 11 |
-
# Initialize the Zephyr client
|
| 12 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Function to load documents based on file type
|
| 15 |
def load_documents(file_path):
|
|
@@ -93,19 +106,36 @@ def handle_query(message, history, system_message, max_tokens, temperature, top_
|
|
| 93 |
return respond(message, history, system_message, max_tokens, temperature, top_p, retriever)
|
| 94 |
|
| 95 |
# Gradio app setup
|
| 96 |
-
demo = gr.ChatInterface(
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
gr.Textbox(value="You are a knowledgeable assistant.", label="System Message"),
|
|
|
|
| 101 |
gr.Slider(1, 2048, step=1, value=512, label="Max Tokens"),
|
| 102 |
gr.Slider(0.1, 4.0, step=0.1, value=0.7, label="Temperature"),
|
| 103 |
gr.Slider(0.1, 1.0, step=0.05, value=0.95, label="Top-p"),
|
| 104 |
],
|
| 105 |
outputs="text",
|
| 106 |
title="RAG with Zephyr-7B",
|
| 107 |
-
description="
|
| 108 |
)
|
| 109 |
|
|
|
|
|
|
|
| 110 |
if __name__ == "__main__":
|
| 111 |
demo.launch()
|
|
|
|
| 8 |
from langchain.chains import RetrievalQA
|
| 9 |
from langchain.prompts import PromptTemplate
|
| 10 |
|
| 11 |
+
# # Initialize the Zephyr client
|
| 12 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 13 |
+
|
| 14 |
+
from huggingface_hub import InferenceClient
|
| 15 |
+
|
| 16 |
+
# Access the Hugging Face token from environment variables
|
| 17 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
| 18 |
+
|
| 19 |
+
if not HF_API_TOKEN:
|
| 20 |
+
raise ValueError("Hugging Face API token is not set in environment variables.")
|
| 21 |
+
|
| 22 |
+
# Initialize the client with the token
|
| 23 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=HF_API_TOKEN)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
|
| 27 |
# Function to load documents based on file type
|
| 28 |
def load_documents(file_path):
|
|
|
|
| 106 |
return respond(message, history, system_message, max_tokens, temperature, top_p, retriever)
|
| 107 |
|
| 108 |
# Gradio app setup
|
| 109 |
+
# demo = gr.ChatInterface(
|
| 110 |
+
# fn=handle_query,
|
| 111 |
+
# additional_inputs=[
|
| 112 |
+
# gr.File(label="Upload File", type="file"),
|
| 113 |
+
# gr.Textbox(value="You are a knowledgeable assistant.", label="System Message"),
|
| 114 |
+
# gr.Slider(1, 2048, step=1, value=512, label="Max Tokens"),
|
| 115 |
+
# gr.Slider(0.1, 4.0, step=0.1, value=0.7, label="Temperature"),
|
| 116 |
+
# gr.Slider(0.1, 1.0, step=0.05, value=0.95, label="Top-p"),
|
| 117 |
+
# ],
|
| 118 |
+
# outputs="text",
|
| 119 |
+
# title="RAG with Zephyr-7B",
|
| 120 |
+
# description="A Retrieval-Augmented Generation chatbot powered by Zephyr-7B and Chroma vector database.",
|
| 121 |
+
# )
|
| 122 |
+
|
| 123 |
+
demo = gr.Interface(
|
| 124 |
+
fn=handle_uploaded_file, # Handle uploaded files
|
| 125 |
+
inputs=[
|
| 126 |
+
gr.File(label="Upload Document"),
|
| 127 |
gr.Textbox(value="You are a knowledgeable assistant.", label="System Message"),
|
| 128 |
+
gr.Textbox(label="Enter Your Query", placeholder="Ask a question..."),
|
| 129 |
gr.Slider(1, 2048, step=1, value=512, label="Max Tokens"),
|
| 130 |
gr.Slider(0.1, 4.0, step=0.1, value=0.7, label="Temperature"),
|
| 131 |
gr.Slider(0.1, 1.0, step=0.05, value=0.95, label="Top-p"),
|
| 132 |
],
|
| 133 |
outputs="text",
|
| 134 |
title="RAG with Zephyr-7B",
|
| 135 |
+
description="Upload documents and ask questions using RAG.",
|
| 136 |
)
|
| 137 |
|
| 138 |
+
|
| 139 |
+
|
| 140 |
if __name__ == "__main__":
|
| 141 |
demo.launch()
|